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Motivation NoMora Cluster Scheduling Policy
e Network latency variability is common in multi-tenant data centers, e NoMora architecture:
leading to performance variability [1,3]. Even small amounts of delay, in o Functions that predict application performance dependent upon
the order of microseconds, may lead to significant drops in application network latency;
performance [1]. o Network latency measurement system (Pingmesh [9], PTPmesh[10]);
e For example, we obtained different performance values for Memcached o Latency-driven, application performance-aware, cluster
in different data centres, and in the same data centre at different times scheduling policy implemented on top of the Firmament [11] cluster
after restarting the VMs. scheduler, which models the cluster scheduling problem as a
e We place the applications according to how latency-sensitive they are, max-flow min-cost problem.
and to the current measured latency in the data centre, which is not e Flow network: T - task of a job , R - rack, M - machine(host), X - cluster
constant [13]. If latency increases, the application may be migrated. aggregator, U - unscheduled aggregator, S - sink, C - number of cores on
3 1.0 - a machine; a, b, ¢, d costs on arcs
é 08 B Azure osl e Jobs: have a root task (the server/the master and the clients/workers)
S ' e Placement algorithm:
g 06 061 o the root task is scheduled on any available machine (the root task is
g 04 04 I e assigned a single arc to the cluster aggregator, with a cost of 0);
g 02 0.2 = D o if a task that is not a root task enters the system at the same time as
2 00 = = = 00— B0 1200 1800 the root task, or before the root task is scheduled, it will not be

scheduled, waiting instead,;

o if the root task is scheduled, then a new task's placement is
determined based on the application performance prediction, and
current network latencies to the root task’s placement.

Modeling Application Performance

e \We studied the effect of network latency on application performance, as 0
defined for a certain application. P
e We did this by artificially injecting arbitrary network latency into a A T
networked system using a bespoke hardware appliance [1,2].
e We fit a curve to the observed results to find p(injected latency)= meiD
normalized application performance metric, where p is the performance.
e For the small latency values the model can be assimilated to a constant
function whose value is the baseline performance. me; 0
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Spark [8] Master 8 Training time 100 Spark-perf 100K Si lati tup:
Ridge iterations generator[8] samples, ¢ Imulation setup:
Regression 10K o Google cluster trace [12]
features o Network latency measurements from [13]
o Topology - number of hosts per rack 16, number of racks per pod 48
Memcached STRADS e Evaluation metrics: o | .
» | . | | | | o Avergge appI!catlon performance: measures task placement quality;
3 o S o  Algorithm runtime;
10 : ' : o Task placement latency.
8 0 e Average application performance improves by up to 13.4% and by up to 42% if
5 5 migration is enabled, compared to the baselines.
308 3 e The task placement latency improves by a factor of 1.79% and the median algorithm
204 g runtime by 1.16x compared to the baselines.
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