Latency-Driven, Application Performance-Aware,
Cluster Scheduling

Diana Andreea Popescu, Andrew W. Moore
University of Cambridge
Contact: diana.popescu@cl.cam.ac.uk

Motivation NoMora Cluster Scheduling Policy
e Network latency variability is common in multi-tenant data centers, e NoMora architecture:
leading to performance variability [1,3]. Even small amounts of delay, in o Functions that predict application performance dependent upon
the order of microseconds, may lead to significant drops in application network latency;
performance [1]. o Network latency measurement system (Pingmesh [9], PTPmesh[10]);
e For example, we obtained different performance values for Memcached o Latency-driven, application performance-aware, cluster
in different data centres, and in the same data centre at different times scheduling policy implemented on top of the Firmament [11] cluster
after restarting the VMs. scheduler, which models the cluster scheduling problem as a
e We place the applications according to how latency-sensitive they are, max-flow min-cost problem.
and to the current measured latency in the data centre, which is not e Flow network: T - task of a job , R - rack, M - machine(host), X - cluster
constant [13]. If latency increases, the application may be migrated. aggregator, U - unscheduled aggregator, S - sink, C - number of cores on
3 1.0 - a machine; a, b, ¢, d costs on arcs
é 08 B Azure osl e Jobs: have a root task (the server/the master and the clients/workers)
S ' e Placement algorithm:
g 06 061 o the root task is scheduled on any available machine (the root task is
g 04 04 I e assigned a single arc to the cluster aggregator, with a cost of 0);
g 02 0.2 = D o if a task that is not a root task enters the system at the same time as
2 00 = = = 00— B0 1200 1800 the root task, or before the root task is scheduled, it will not be

scheduled, waiting instead,;

o if the root task is scheduled, then a new task's placement is
determined based on the application performance prediction, and
current network latencies to the root task’s placement.

Modeling Application Performance

e \We studied the effect of network latency on application performance, as 0
defined for a certain application. P
e We did this by artificially injecting arbitrary network latency into a A T
networked system using a bespoke hardware appliance [1,2].
e We fit a curve to the observed results to find p(injected latency)= meiD
normalized application performance metric, where p is the performance.
e For the small latency values the model can be assimilated to a constant
function whose value is the baseline performance. me; 0
Application Role #Hosts Metric Runtime Dataset Dataset L A
Target Size St ienagem ST
Memcached [4] | Server 5 Queries/sec | 10 seconds | FB ETC [5] See [5] ki
Tensorflow Server 9 Training time | 20K MNIST 60K 1 1
. - . . ;T E OO o = i ip=COoSt(T; ;,R;) =
Handwritten digit iterations examples d'-J-’" CO”(TLJ.M"') p(max(latency(M,-,,m,M,,,))) Cijr cost (L r) ',‘223‘ p(max(latency(Myoor,Mm)))
recognition [6]
STRADS [7] Coordinator | 6 Training time 100K Synthetic 10K ajj=mXxX0;+Y ¢ j task wait time bi j = maxc; j
Lasso iterations samples, !
Regression 100K
feat i
NoMora Evaluation
Spark [8] Master 8 Training time 100 Spark-perf 100K Si lati tup:
Ridge iterations generator[8] samples, ¢ Imulation setup:
Regression 10K o Google cluster trace [12]
features o Network latency measurements from [13]
o Topology - number of hosts per rack 16, number of racks per pod 48
Memcached STRADS e Evaluation metrics: o | .
» | . | | | | o Avergge appI!catlon performance: measures task placement quality;
3 o S o Algorithm runtime;
10 : ' : o Task placement latency.
8 0 e Average application performance improves by up to 13.4% and by up to 42% if
5 5 migration is enabled, compared to the baselines.
308 3 e The task placement latency improves by a factor of 1.79% and the median algorithm
204 g runtime by 1.16x compared to the baselines.
0.2} 1.0 T () : 10 .
0.8 - ol (| g
0% 200 200 600 800 1000 0% 200 200 600 800 1000 § 0% (, = 038 7
Added Delay[us] Added Delay[us] I 06] S
a E06r 1 £ 06]
© 04t E k|
Tensorflow Spark 204t 4 Zo4 .
1.2 : 0.2+ S &
o+ Model 12 F—— é 02} _ E 0.2 4
¢ Actual ctua 0.0 !
10} ' » :] v .\# 0 20 40 60 80 100 00 Lo J Y W T eI =
g E —— random — random
E 06} E — load-spreading — load-spreading — random)
— Noborw 105110 L e e
E 0.4} g 0.4 NoMora-105-110-preempt — NoMora-110-115 — NoMora-105-110-preempt
= = NoMora-110-115 NoMora-105-110-preempt-no-executed-time — NoMora-110-115
02 02 NoMora-105-110-preempt-no-executed-time NoMora-105-110-preempt-no-executed-time
005 200 400 600 800 1000 005 200 400 600 800 1000
Added Delay[us] Added Delayus] [1] Characterizing the impact of network latency on cloud-based applications’ performance, Diana Andreea Popescu et al., Technical Report,
Number 914, UCAM-CL-TR-914, ISSN 1476-2986, November 2017,University of Cambridge, UK

[2] Where Has My Time Gone?, Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan Manihatty-Bojan, Gianni Antichi,
Marcin Wojcik, Andrew W. Moore, PAM 2017

[3] Inferring the Network Latency Requirements of Cloud Tenants, Jeffrey C. Mogul and Ramana Rao Kompella, HotOS 2015

[4] Mutilate, https://github.com/leverich/mutilate

[5] Workload Analysis of a Large-scale Key-value Store, Atikoglu and et al., ACM SIGMETRICS 2012

[6] Tensorflow, https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist

[7] STRADS: A Distributed Framework for Scheduled Model Parallel Machine Learning,Kim et al., EuroSys 2016

[8] Spark, https://github.com/databricks/spark-perf
[9] Pingmesh: A Large-Scale System for Data Center Network Latency Measurement and Analysis, Guo et al., ACM SIGCOMM 2015

: . [10] PTPmesh: Data center network latency measurements using PTP, Diana Andreea Popescu and Andrew W. Moore, IEEE MASCOTS 2017
ThIS Work was Supported by the EU FP7 METRICS ITN (grant number 607728)’ EU HOFIZOﬂ [11] Firmament: Fast, Centralized Cluster Scheduling at Scale, Gog et al., OSDI 2016

i i - [12] https://github.com/google/cluster-data
2020 researCh and Innovatlon prog ramme 201 4 201 8 under the SSICLOPS (g rant agreement [13] A First Look at Data Center Network Conditions Through The Eyes of PTPmesh, Diana Andreea Popescu and Andrew W. Moore,

No. 644866). IFIP/IEEE TMA 2018

https://github.com/leverich/mutilate
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist
https://github.com/databricks/spark-perf
https://github.com/google/cluster-data

