
Rhythm: Component-distinguishable Workload
Deployment in Datacenters

Laiping Zhao1, Yanan Yang1, Kaixuan Zhang1,

Xiaobo Zhou1, Tie Qiu1, Keqiu Li1, Yungang Bao2

1Tianjin University, 2Inst. Of Computing Technology, CAS

College of Intelligence and Computing

2

pBackground

pInterference on LC components

pRhythm Controller

pExperimental Evaluation

pConclusion

Outline

Background

pAliyun: The average CPU utilization of co-located

cluster approaches to 40% [Guo, 2019].

pImproved, but still low utilization.
3

pLow Resource Utilization of Datacenter

Background

pProfiling of the workload.

pSchedule in a cross-

complementing way.

4

pReal-time monitoring;

pPassive adjustment on

resource allocation.

pCo-location: Improving the resource utilization

pInterference causes unpredictable latency.

Background

pSocialNetwork service.

p31 microservices.

5

Source: [Deathstarbench, ASPLOS’19]

pMany-component Services:

pA Single Transaction Across ~40
Racks of ~60 Servers Each.

pArc: client-server RPC.

Source: [Google, Datacenter Computers modern
challenges in CPU design, 2015]

Problem
pHow can we feedback-control when a request is served

by multiple components collaboratively?

6

𝐿"#$%&'' = 𝐿)*+,+ 𝐿)*+- + ⋯

𝑇𝐿"#$%&'' = 𝑓(𝑇𝐿)*+,+ 𝑇𝐿)*+- + ⋯)

• Latency:

• Tail Latency:

pGiven an overall TL, how to derive a sub-TL for each component?

pOR: How the component-control affect the overall-TL?

1HWZRUN
1HWZRUN

8VHU

Inconsistent Interference Tolerance

7

pComponents perform significant difference (~435%) under

the same source of interference.

Redis architecture: E-commerce architecture:

Rhythm Design
pRhythm Insight:

nComponents with smaller contributions to the tail
latency can be co-located with BE jobs aggressively.

pChallenges:

nHow to quantify the contributions of a component?

nHow to control the BE deployment aggressively?
lWhen to colocate?

lHow many BEs can we co-locate with the LC?

8

1HWZRUN
1HWZRUN

8VHU

6HUYHU�1
6HUYHU�� 6HUYHU��

1HWZRUN

8VHU &RPSRQHQW

1HWZRUN

Rhythm
nInconsistent interference tolerance ability;

pTracking user request:

Request tracer
pCausal path graph

nSend/Receive events: ACCEPT, RECV, SEND, CLOSE

nEvent: <type, timestamp, context identifier, message identifier>

nContext: <hostIP, programName, processID, threadID>

nMessage: <senderIP, senderPort, receiverIP, receivePort, messageSize>

10

6HUYHU�1
6HUYHU�� 6HUYHU��

1HWZRUN

8VHU &RPSRQHQW

1HWZRUN

6HUYSRG�1 1HWZRUN
8VHU

1HWZRUN6HUYSRG�2 6HUYSRG�3

Rhythm nInconsistent interference tolerance ability;

nTracking user request;

pServpod abstraction:

nA collection of service components from one LC service that are

deployed together on the same physical machine.

nFor deriving the sojourn time of each request in each server.

6HUYSRG�1 1HWZRUN
8VHU

1HWZRUN6HUYSRG�2 6HUYSRG�3

Rhythm

nInconsistent interference tolerance ability;

nTracking user request;

nContribution analyzing:

nServpod abstraction;

LCLCLC

&RQWULEXWLRQ�RI�VHUYSRG� &RQWULEXWLRQ�RI�VHUYSRG� &RQWULEXWLRQ�RI�VHUYSRG�

Contribution Analyzer

pServpods with higher average sojourn time contribute more to TL.

pServpods with higher sojourn time variance contribute more to TL.

pServpods that highly correlated with the tail latency contribute more to tail

latency.

Mean Variance

13

Contribution Analyzer
pIs this definition effective?

nSensitivity vs contributions

14

nThe increase in the 99th-tile latency when a single

Servpod is interfered by different BEs:

l Mixed BEs of wordcount,

imageClassify, lstm, CPU-stress,

stream-dram and stream-llc.

l DRAM intensive: Stream-dram

l CPU intensive: CPU-stress

l LLC intensive: Stream-llc.

Rhythm nInconsistent interference tolerance ability;

nTracking user request;

nContribution analyzing;

nServpod abstraction;

Agent 2

LC

BE

Agent 3

BE

Agent 4

LC

BE

LC

6HUYHU�� 6HUYHU�� 6HUYHU��

LCLCLC

&RQWULEXWLRQ�RI�VHUYSRG� &RQWULEXWLRQ�RI�VHUYSRG� &RQWULEXWLRQ�RI�VHUYSRG�

BE jobs …

pController:
n Loadlimit: allowing colocation when load<loadlimit;

l The “Knee point” of performance-load curve.

n Slacklimit: the lower bound of slack for allowing the growth of BEs.
l Slack = SLA – currentTL;
l Small contribution à larger slacklimit;

Controller
pWhen can we co-locate workloads?

nLoadlimit.

pLoadlimit per servpod:

nThe upper bound of the request load for allowing the

colocation with BE jobs;

nknee point: 76% of max for MySQL; 87% of max for Tomcat.

16

Controller
pHow many BEs can we co-locate?

nSlacklimit: the lower bound of slack for allowing the
growth of BE jobs.

17

Slack = SLA – currentTL;

Co-locating decisions:

• contribution 1 < contribution 2
• slacklimit1 < slacklimit 2

…

…

1-contribution1

1-contribution1

1-contribution1

Servpod 1 Servpod 2

Init. Slacklimt1 = 1 Init. Slacklimt2 = 1

Slacklimit2

Slacklimit1

1-contribution2

1-contribution2

1-contribution2

Experimental Evaluation

pBenchmarks:

n LC services：

l Apache Solr：Solr engine+Zookeeper

l Elasticsearch：Index+Kibana

l Elgg：Webserver+Memcached+Mysql

l Redis：Master + Slave

l E-commerce: Haproxy+Tomcat+Amoeba+Mysql

18

n BE Tasks：

l CPU-Stress; Stream-LLC; Stream-DRAM

l Iperf：Network

l LSTM：Mixed

l Wordcount

l ImageClassify： deep learning

pTestbed

p16 Sockets, 64 GB of DRAM per socket. Each socket shares 20 MB of L3 cache.

p Intel Xeon E7-4820 v4 @ 2.0 GHz: 32 KB L1-cache and 256 KB L2-cache per core.

pThe operating system is Ubuntu 14.04 with kernel version 4.4.0-31.

Overall Analysis

19

pOverall analysis (compared to Heracles [ISCA,2015])

n Improve EMU (=LC throughput + BE throughput) by 11.6%~24.6%;

n Improve CPU utilization by 19.1%~35.3%;

n Improve memory bandwidth utilization by 16.8%~33.4%.

EMU CPU Utilization MemBan utilization

Timeline Analysis

pTimeline：

nTime 3.3：

suspendBE()；

nTime 5.6：

allowBEGrowth()；

nTime 7.7：

cutBE();

nTime 9.3:

suspendBE().
20

Conclusion

pRhythm, a deployment controller that maximizes

the resource utilization while guaranteeing LC

service`s tail latency requirement.

nRequest tracer

nContribution analyzer

nController

pExperiments demonstrate the improvement on

system throughput and resource utilization.

21

Thank you!
Questions?

22

