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Cluster Resource Utilization 
• Scheduling Efficiency

• Utilization Efficiency

Core Problem

3



Cluster Resource Utilization

4

Borg

Sparrow

Apollo

Mercury



Scheduling Efficiency and Utilization Efficiency

Scheduling Efficiency (SE) Utilization Efficiency (UE)
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Application Scenario

• Workload: 70% OLAP, 20% machine learning and 10% graph 
analytics

• Performance Objective
1. Maximize job throughput (minimize makespan)

2. Minimize average job completion time (JCT) (time from submission to 
completion)

6

Project
Quota 
Group

Virtual 
Cluster



Dynamic Resource Utilization Pattern
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Ursa: achieving high SE 
and UE by fine-grained, 
dynamic, load-balanced 
resource negotiation

Central Idea
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Design Objectives
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Obj-1. Accurate resource request

Obj-2. Timely provision and release of resource

UE

Obj-3. Load-balanced task assignment

Obj-4. Low-latency resource scheduling

SE



Using Monotask to Handle Dynamic Patterns
• Monotask* is a unit of work that uses only a single type of resource
(e.g. CPU, network bandwidth, disk I/O) apart from memory

• Introduced for job performance reasoning

• A unit of execution with steady and predictable resource utilization
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* Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott Shenker. 2017. Monotasks: Architecting for performance 
clarity in data analytics frameworks. In Proceedings ofthe 26th ACMSymposium on Operating Systems Principles (SOSP 17). 
ACM, 184–200.



A scheduling and 
execution framework

System: Ursa
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API and Monotask Generationtemplate <typename ValueType>

class Dataset { // ...

auto ReduceByKey(Combiner combiner, int partitions) {

auto msg = dag.CreateData(this->partitions);

auto shuffled = dag.CreateData(partitions);

auto result = dag.CreateData(partitions);

auto ser = dag.CreateOp(CPU) // create CPU Op

.Read(this).Create(msg)

.SetUDF(/*apply combiner locally and serialize*/);

auto shuffle = dag.CreateOp(Network).Read(msg).Create(shuffled);

auto deser = dag.CreateOp(CPU)

.Read(shuffled).Create(result)

.SetUDF(/*deserialize and apply combiner*/)

this->creator.To(ser, ASYNC);

ser.To(shuffle, SYNC);

shuffle.To(deser, ASYNC);

return result;

}

// ...

OpGraph dag;

Op creator;

int partitions;

};
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High-Level APIs

• SQL (connected to Hive)

• Spark-like dataset transformations

• Pregel-like vertex-centric interface
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System Overview
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System Overview
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Task placement

• Resource usage estimation

• The CPU, network and disk I/O usage is estimated on a monotask basis
• The execution layer is designed to guarantee stable resource utilization by each type of 

monotasks during their execution

• The memory usage is estimated on a task basis
• The memory usage during the execution of a task is relatively stable

In contrast to simply using coarse-grained (historical) peak resource demands, 

monotask-based resource estimation allows

per-resource needs to be captured dynamically at runtime
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Task placement

• Stage-aware load-balanced task placement

• A unified measure for multi-dimensional resource consumption

• Total resource consumption in contrast to the peak demands of tasks

• Stage-aware task placement to avoid stragglers due to scheduling delay
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Task placement

• Stage-aware load-balanced task placement

• Approximate Processing Time (APTr)

=(Total input data size of assigned type−r monotasks) / (Processing rate)
• APTr tells when resource-r on a worker will become idle

• Per-resource processing rates on each worker are periodically updated to the scheduler

• Expected Processing Time (EPT)
• EPT is an indicator of whether a worker is over-loaded or under-loaded

• Set to slightly larger than the scheduling interval
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Task placement

From APT and EPT, we can compute

• Difference between EPT and APT for resource r at 
worker w as

𝐷𝑟 𝑤 = max(0,
𝐸𝑃𝑇 − 𝐴𝑃𝑇𝑟 𝑤

𝐸𝑃𝑇
)

• The increase in the load of worker w in using resource 
r if task t is placed in w as 𝐼𝑛𝑐𝑟(𝑡, 𝑤)

• Task placement score as a dot product

𝐹 𝑡, 𝑤 = ෍

𝑟∈{𝐶𝑃𝑈,𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝑑𝑖𝑠𝑘,𝑚𝑒𝑚}

𝐷𝑟 𝑤 × 𝐼𝑛𝑐𝑟(𝑡, 𝑤)
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Task Placement

• Stage-awareness
• Each schedule decision is a plan with tasks in the same stage instead of with 

a single task

• Ranking plans by stage-average scores

• A large bonus is given to a plan if the plan assigns all tasks in stage S, so 
that such plans are always considered before other plans
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Other Scheduling Details

• Supporting scheduling policies
• Earliest Job First (EJF) and Smallest Remaining Job First (SRJF)

• Job ordering at the scheduler and monotask ordering at distributed queues

• Concurrency control
• Avoid resource contention among running monotasks

• Maintain high utilization of resource
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Experimental 
Evaluation
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Settings

• Workloads
• OLAP: TPC-H and TPC-DS

• Mixed: 70% OLAP, 20% machine learning and 10% graph analytics (ratio by 
total CPU usage)

• A cluster of 20 machines connected by 10 Gbps Ethernet
• Resembles a small cluster requested by a quota group
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Limitations of using coarse-grained containers

makespan avgJCT UEcpu SEcpu UEmem SEmem

EJF 2803 600.00 99.64 92.47 78.83 39.80

SRJF 2859 489.96 99.65 89.73 78.02 48.85

YARN+Spark 3849 1407.40 69.35 93.32 34.69 44.13

YARN+Tez 9228 4287.00 58.97 98.19 28.81 70.71
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makespan avgJCT UEcpu SEcpu UEmem SEmem

EJF 1613 453.20 99.57 88.31 81.64 25.01

SRJF 1630 242.27 99.75 86.99 85.83 32.93

YARN+Spark 2927 894.36 48.56 90.48 19.39 37.65

Performance on TPC-H

Performance on TPC-DS



Limitations of using coarse-grained containers
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Compare with Alternative Approaches
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makespan avgJCT UEcpu SEcpu

Ursa-EJF 464.00 208.21 99.57 86.60

Ursa-SRJF 473.50 170.64 98.89 86.08

YARN+Ursa 842.92 443.80 44.15 89.97

YARN+Spark 1072.66 435.00 67.92 83.84

Capacity 511.00 226.16 99.77 78.66

Tetris 562.33 254.52 98.62 70.02

Tetris2 506.00 240.83 99.71 79.75

Performance on Mixed

Subscription 
ratio

makespan
(YARN+Ursa)

avgJCT
(YARN+Ursa)

makespan
(YARN+Spark)

avgJCT
(YARN+Spark)

1 842.92 443.80 1072.66 435.00

2 637.96 345.99 872.67 341.77

4 596.66 325.32 892.83 365.30

Using monotasks alone

Using other scheduling algorithms

Over-subscription of CPU



Conclusions
Ursa:

• A framework for both resource scheduling 
and job execution

• Handles jobs with frequent fluctuations in 
resource usage

• Captures dynamic resource needs at runtime 
and enables fine-grained, timely scheduling

• Achieves high resource utilization, which is 
translated into significantly improved 
makespan and average JCT
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Thank You
Contact: Tatiana Jin (tjin@cse.cuhk.edu.hk)
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