
Improving Resource Utilization by 
Timely Fine-Grained Scheduling

Tatiana Jin, Zhenkun Cai, Boyang Li,

Chenguang Zheng, Guanxian Jiang, James Cheng

Department of Computer Science and Engineering

The Chinese University of Hong Kong



Core Problem Central Idea System: Ursa Experimental 
Evaluation

2



Cluster Resource Utilization 
• Scheduling Efficiency

• Utilization Efficiency

Core Problem

3



Cluster Resource Utilization

4

Borg

Sparrow

Apollo

Mercury



Scheduling Efficiency and Utilization Efficiency

Scheduling Efficiency (SE) Utilization Efficiency (UE)

5

Capacity Capacity

Allocated

Allocated
Actually Utilized



Application Scenario

• Workload: 70% OLAP, 20% machine learning and 10% graph 
analytics

• Performance Objective
1. Maximize job throughput (minimize makespan)

2. Minimize average job completion time (JCT) (time from submission to 
completion)

6

Project
Quota 
Group

Virtual 
Cluster



Dynamic Resource Utilization Pattern

7



Ursa: achieving high SE 
and UE by fine-grained, 
dynamic, load-balanced 
resource negotiation

Central Idea

8



Design Objectives

9

Obj-1. Accurate resource request

Obj-2. Timely provision and release of resource

UE

Obj-3. Load-balanced task assignment

Obj-4. Low-latency resource scheduling

SE



Using Monotask to Handle Dynamic Patterns
• Monotask* is a unit of work that uses only a single type of resource
(e.g. CPU, network bandwidth, disk I/O) apart from memory

• Introduced for job performance reasoning

• A unit of execution with steady and predictable resource utilization

10

Container
Monotask

Dataflow Tasks
Resource-oriented, 
execution-agnostic

Execution-oriented,
resource-agnostic

Scheduling ExecutionUrsa
* Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott Shenker. 2017. Monotasks: Architecting for performance 
clarity in data analytics frameworks. In Proceedings ofthe 26th ACMSymposium on Operating Systems Principles (SOSP 17). 
ACM, 184–200.



A scheduling and 
execution framework

System: Ursa

11



API and Monotask Generationtemplate <typename ValueType>

class Dataset { // ...

auto ReduceByKey(Combiner combiner, int partitions) {

auto msg = dag.CreateData(this->partitions);

auto shuffled = dag.CreateData(partitions);

auto result = dag.CreateData(partitions);

auto ser = dag.CreateOp(CPU) // create CPU Op

.Read(this).Create(msg)

.SetUDF(/*apply combiner locally and serialize*/);

auto shuffle = dag.CreateOp(Network).Read(msg).Create(shuffled);

auto deser = dag.CreateOp(CPU)

.Read(shuffled).Create(result)

.SetUDF(/*deserialize and apply combiner*/)

this->creator.To(ser, ASYNC);

ser.To(shuffle, SYNC);

shuffle.To(deser, ASYNC);

return result;

}

// ...

OpGraph dag;

Op creator;

int partitions;

};
12

Stage Task

CPU Monotask

Network Monotask



High-Level APIs

• SQL (connected to Hive)

• Spark-like dataset transformations

• Pregel-like vertex-centric interface

13



System Overview

14

Scheduler Workers

Resource 
Monitoring

Job 
Admission

&
Task 

Placement

Resource Status Report

Monotask 
Queues

CPU, Network, Disk

Monotask 
Queues

CPU, Network, Disk

Job Manager

Resource 
Demand 
Estimator

DAG Manager

Job Process

Network ServiceUDFs

Data Store

Task 
Resource 
Usage

Metadata 
Store

Monotask
Resource 
Request

Monotask 
assignment

Job Process

Network ServiceUDFs

Data Store



System Overview

15

Scheduler Workers

Resource 
Monitoring

Job 
Admission

&
Task 

Placement

Resource Status Report

Monotask 
Queues

CPU, Network, Disk

Monotask 
Queues

CPU, Network, Disk



System Overview

16

Scheduler Workers

Resource 
Monitoring

Job 
Admission

&
Task 

Placement

Resource Status Report

Monotask 
Queues

CPU, Network, Disk

Monotask 
Queues

CPU, Network, Disk

Job Manager

Resource 
Demand 
Estimator

DAG Manager

Task 
Resource 
Usage

Metadata 
Store

Monotask
Resource 
Request



System Overview

17

Scheduler Workers

Resource 
Monitoring

Job 
Admission

&
Task 

Placement

Resource Status Report

Monotask 
Queues

CPU, Network, Disk

Monotask 
Queues

CPU, Network, Disk

Job Manager

Resource 
Demand 
Estimator

DAG Manager

Job Process

Network ServiceUDFs

Data Store

Task 
Resource 
Usage

Metadata 
Store

Monotask
Resource 
Request

Monotask 
assignment

Job Process

Network ServiceUDFs

Data Store



Task placement

• Resource usage estimation

• The CPU, network and disk I/O usage is estimated on a monotask basis
• The execution layer is designed to guarantee stable resource utilization by each type of 

monotasks during their execution

• The memory usage is estimated on a task basis
• The memory usage during the execution of a task is relatively stable

In contrast to simply using coarse-grained (historical) peak resource demands, 

monotask-based resource estimation allows

per-resource needs to be captured dynamically at runtime

18



Task placement

• Stage-aware load-balanced task placement

• A unified measure for multi-dimensional resource consumption

• Total resource consumption in contrast to the peak demands of tasks

• Stage-aware task placement to avoid stragglers due to scheduling delay

19



Task placement

• Stage-aware load-balanced task placement

• Approximate Processing Time (APTr)

=(Total input data size of assigned type−r monotasks) / (Processing rate)
• APTr tells when resource-r on a worker will become idle

• Per-resource processing rates on each worker are periodically updated to the scheduler

• Expected Processing Time (EPT)
• EPT is an indicator of whether a worker is over-loaded or under-loaded

• Set to slightly larger than the scheduling interval

20



Task placement

From APT and EPT, we can compute

• Difference between EPT and APT for resource r at 
worker w as

𝐷𝑟 𝑤 = max(0,
𝐸𝑃𝑇 − 𝐴𝑃𝑇𝑟 𝑤

𝐸𝑃𝑇
)

• The increase in the load of worker w in using resource 
r if task t is placed in w as 𝐼𝑛𝑐𝑟(𝑡, 𝑤)

• Task placement score as a dot product

𝐹 𝑡, 𝑤 = ෍

𝑟∈{𝐶𝑃𝑈,𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝑑𝑖𝑠𝑘,𝑚𝑒𝑚}

𝐷𝑟 𝑤 × 𝐼𝑛𝑐𝑟(𝑡, 𝑤)

21

Pick more lightly-loaded workers

Pick tasks with heavier load 
(harder to place)



Task Placement

• Stage-awareness
• Each schedule decision is a plan with tasks in the same stage instead of with 

a single task

• Ranking plans by stage-average scores

• A large bonus is given to a plan if the plan assigns all tasks in stage S, so 
that such plans are always considered before other plans

22



Other Scheduling Details

• Supporting scheduling policies
• Earliest Job First (EJF) and Smallest Remaining Job First (SRJF)

• Job ordering at the scheduler and monotask ordering at distributed queues

• Concurrency control
• Avoid resource contention among running monotasks

• Maintain high utilization of resource

23



Experimental 
Evaluation

24



Settings

• Workloads
• OLAP: TPC-H and TPC-DS

• Mixed: 70% OLAP, 20% machine learning and 10% graph analytics (ratio by 
total CPU usage)

• A cluster of 20 machines connected by 10 Gbps Ethernet
• Resembles a small cluster requested by a quota group

25



Limitations of using coarse-grained containers

makespan avgJCT UEcpu SEcpu UEmem SEmem

EJF 2803 600.00 99.64 92.47 78.83 39.80

SRJF 2859 489.96 99.65 89.73 78.02 48.85

YARN+Spark 3849 1407.40 69.35 93.32 34.69 44.13

YARN+Tez 9228 4287.00 58.97 98.19 28.81 70.71

26

makespan avgJCT UEcpu SEcpu UEmem SEmem

EJF 1613 453.20 99.57 88.31 81.64 25.01

SRJF 1630 242.27 99.75 86.99 85.83 32.93

YARN+Spark 2927 894.36 48.56 90.48 19.39 37.65

Performance on TPC-H

Performance on TPC-DS



Limitations of using coarse-grained containers

27

TPC-H

TPC-DS



Compare with Alternative Approaches

28

makespan avgJCT UEcpu SEcpu

Ursa-EJF 464.00 208.21 99.57 86.60

Ursa-SRJF 473.50 170.64 98.89 86.08

YARN+Ursa 842.92 443.80 44.15 89.97

YARN+Spark 1072.66 435.00 67.92 83.84

Capacity 511.00 226.16 99.77 78.66

Tetris 562.33 254.52 98.62 70.02

Tetris2 506.00 240.83 99.71 79.75

Performance on Mixed

Subscription 
ratio

makespan
(YARN+Ursa)

avgJCT
(YARN+Ursa)

makespan
(YARN+Spark)

avgJCT
(YARN+Spark)

1 842.92 443.80 1072.66 435.00

2 637.96 345.99 872.67 341.77

4 596.66 325.32 892.83 365.30

Using monotasks alone

Using other scheduling algorithms

Over-subscription of CPU



Conclusions
Ursa:

• A framework for both resource scheduling 
and job execution

• Handles jobs with frequent fluctuations in 
resource usage

• Captures dynamic resource needs at runtime 
and enables fine-grained, timely scheduling

• Achieves high resource utilization, which is 
translated into significantly improved 
makespan and average JCT

29



Thank You
Contact: Tatiana Jin (tjin@cse.cuhk.edu.hk)

30

mailto:tjin@cse.cuhk.edu.hk

