Mousse: A System for Selective Symbolic
Execution of Programs with Untamed
Environments

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani
University of California, Irvine

Movsse

What are programs with untamed
environments?

Program environment

-

Program

~

Interactions
(e.g., read, write)

Program environment
(e.g., file systems, networks)

%

Untamed environment

-~

~

Program

Interactions
(e.g., ioctl)

Untamed environment
(e.g., device drivers, customized
hardware)

Example programs with untamed environments

OS services

Example programs with untamed environments

Software
frameworks for
accelerators

OS services

Example programs with untamed environments

Software
frameworks for
accelerators

OS services

customized
applications

Programs with untamed environments are growing

Copyright: https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08 frag mentation_report.pgf

Selective Symbolic Execution (SSE)

“‘Selective symbolic execution is a way to specify which parts of this big “program” should run
concretely and which ones should run symbolically.”

“Selective symbolic execution makes symbolic execution practical for large software that runs
in real environments.”

- Selective symbolic execution [HotDep’09]

Existing approaches for analyzing programs
with untamed environments using SSE

10

Existing approach - symbolic environment

/

Program

write read

“drop” Symbolic variable

Symbolic environment

Symbolic execution engine

~

_

/

Device

RevNIC [EuroSys’10]
DDT [USENIX ATC'10]
SymDrive [OSDI'12]

11

Existing approach - symbolic environment

-~

Program

write read

“drop” Symbolic variable

Symbolic environment

Symbolic execution engine

~

_

/

Device

False positives
Path explosion

Fail to initialize

12

Existing approach - decoupled execution

-

~

Program

Symbolic execution engine

o

/

External machine

Avatar [NDSS’14]
Avatar2 [BAR’18]
Symbion

Memory Sync

-

~

Program

Concrete execution engine

\ Untamed environment

Device with the env.

13

Existing approach - decoupled execution

4 R

Program

Concrete execution engine

\ Untamed environment /

Device with the env.

14

Existing approach - decoupled execution

-

~

Program

Symbolic execution engine

_

/

External machine

Memory Sync

Concrete execution engine

Untamed environment

Device with the env.

15

Existing approach - decoupled execution

4 R

Program

Memory Sync

Concrete execution engine

\ Untamed environment /

Device with the env.

16

Existing approach - decoupled execution

-

~

Program

Symbolic execution engine

o

/

External device

Significant

overhead

Memory Sync

4 R

Program

Concrete execution engine

\ Untamed environment

Device with the env.

17

Mousse
is tailored for programs with untamed
environments achieving three important goals

18

Mousse’s goals

Real
environments

q

2

Ease of use

High
performance

19

Mousse’s solutions

Process-level SSE

Environment-aware concurrency

Distributed execution

Mousse’s solutions

Process-level SSE

21

VM-level SSE

Device without the env.

——

Program

User space

kernel

SSE engine

\ Hypervisor J

VM-level SSE

S2E [ASPLOS’11]

22

VM-level SSE

Device without the env.

-~

VM \ It does not work for

programs with untamed

kernel

User spa

environments because it

requires virtualization.

SSE engine

_

Hypervisor /

VM-level SSE 23

Process-level SSE: key idea

Device without the env.

w0

Program
User space
" Tkemel T~ T T T T T T T T T T T
SSE engine
\ Hypervisor J
VM-level SSE

Device with the env.

F OS process \

User space

\ Untamed environment J

Process-level SSE

24

Process-level SSE: key idea

Device without the env.

L v N

(

Program

[/ser space

kernel

SSE engine

Hypervisor

VM-level SSE

Device with the env.

/ OS process \

User space

K Untamed environment /

Process-level SSE

25

Process-level SSE: key idea

Device without the env.

L vaa

~

kernel

v

\ Hypervisor

/

VM-level SSE

Device with the env.

/ OS process \

Program

SSE engine

User space

K Untamed environment /

Process-level SSE

Process-level SSE: benefits

Process-level SSE
Real

environments

Goals

Ease of Lv

High
performance

27

Mousse’s solutions

Environment-aware concurrency

Environment-aware concurrency: key idea

Path 1 / Execution path 1 \

P Process-level SSE

User space

\ Untamed environment /

Environment-aware concurrency: key idea

éecution path 1

Execution path)

Process-level SSE

User space

k Untamed environment /

30

Environment-aware concurrency: key idea

éecution path 1

Execution path)

Process-level SSE

Process-level SSE

User space

k Untamed environment /

31

Environment-aware concurrency: key idea

éecution path 1 Execution path)

Blind concurrency
does not work

Untamed environment

32

Environment-aware concurrency: key idea

éecution path 1 Execution path)

Q: Is this ecall A

’

allowed in the
il process?
Process-level SSE Process-le _SE
Env. aware Conc. Env. aware Conc.
1 1
User space | ecall A 1 ecall A
[1 -
\ A

\4
\ Untamed environment /

33

Environment-aware concurrency: key idea

State-mutating
ecall A

Environmentally
consistent paths

Environmentally
inconsistent paths

Execution path 1

Execution path 2

O

A: This ecall Ais a
state-mutating ecall and

is allowed for path 1.

P

A: This ecall Ais
rejected to keep the
environment
consistent with path 1.

— «v. OSE

Process: 9Okt

Env. aware Conc.

Env. aware Conc.

Untamed environment

34

Environment-aware concurrency: key idea

Environmentally
consistent paths

Environmentally
inconsistent paths

Execution path 1

Process-level
SSE

Env. aware
Conc.

User space

Execution path 4

Process-level
SSE

Env. aware
Conc.

Untamed environment

35

Environment-aware concurrency: benefits

Process-level SSE

Real
environments
Goals
Ease of Lv

Environment-aware
concurrency

High
performance

36

Mousse’s solutions

Distributed execution

37

Distributed execution: key idea

/ OS process(es) \

Process-level SSE

Env. aware Conc.

User space

\ Untamed environment /

Device 1

State-mutating
ecall A:...

Path 1 *,./

Environmentally
consistent paths

Environmentally
inconsistent paths

38

Distributed execution: key idea

f OS process(es) \

Process-level SSE
Env. aware Conc.

User space

-

~

\ Untamed environment

Device 1

State-mutating
ecall A:...

Path1

Environmentally Environmentally
consistent paths inconsistent paths

39

Distributed execution: key idea

Server

/ OS process(es) \

Process-level SSE
Env. aware Conc.

User space

\ Untamed environment

Device 1

/ OS process(es) \

A

Process-level SSE

Env. aware Conc.

User space

\ Untamed environment

Device 2

Environmentally consistent paths

40

Distributed execution: benefits

Process-level SSE

Real
environments

High
performangce

Goals

Environment-aware
concurrency

Ease of use

Distributed execution

41

Mousse’s goals

Real
environments

Ease of use

High
performance

42

Evaluation

43

Evaluated Mousse on five Android OS services

% AudioServer and AudioProvider services in Pixel 3
% CameraService and CameraDaemon services in Nexus 5X

% OpenGLES graphics libraries in Nexus 5

44

Env. aware conc. improves execution time

Execution Time (hours)

0

o W B Wb O\

5.143

59% improvement

2.102

1 3 6 9 12

Max # concurrent paths

AudioProvider API: adev_set_parameters
(no state-mutating ecalls)

45

Env. aware conc. improves execution time

Execution Time (hours)

0

D W A W N

24%
5.507 improvement

4179

1 3 6 9 12

Max # concurrent paths

AudioProvider API: out_write
(issues state-mutating ecalls)

46

Distributed execution improves execution time

(N

Execution Time (hours)

=

3

5t 2.235
o)

63% improvement

St
1t 0.819
5 L
0

1 2 3 4 5
Number of smartphones

AudioProvider API: adev_set_parameters
(no state-mutating ecalls)

47

Distributed execution improves execution time

4.137

R 64% improvement

2f 1.493

1_

Execution Time (hours)

T2 3 4 5
Number of smartphones

AudioProvider API: out_write
(issues state-mutating ecalls)

48

Env. aware conc. & distributed execution improve

execution time

APl name

adev_set parameters

out_write

Execution time
(no concurrency, no
distributed execution)

5.143 hrs

5.507 hrs

Execution time

(max concurrent paths as 9,

5 smartphones)

0.819 hrs

1.493 hrs

Improvement

84%

73%

49

More evaluation results

3000
21200 i R
ER 1027 1027 | 82500 2965 83500 3029 3395
m m m
9 874 © 2000 220 5479
2 800 2 22500
M ® 1500 M
&g 600 S 1157 2000
5 400 i 1000y 1500
2 2 21000
g 200 g 500
El 2 500

Z . Z. 48 Z

Conc. M-I M-I 0—Eone. Ml Ml 0~ Conc. M-I M-I

Coverage evaluation

e Bugs and vulnerabilities
o Two null-pointer dereferences
o Two double-free vulnerabilities
e Taint analysis

e Performance profiling

Analysis results

#of #of
Exe- off- off-
Ser- ¢
e API name clunon #of loads | loads
isne time path | due due
(minutes) to to
Res. Env.
eglCreateWindowSurface 115.9 11 3 9
eglQuerySurface 118.8 88 40 21
Gs eglGetDisplay 8.7 1 0 0
glCreateShader 34.2 5 0 3
glShaderSource 1605.8 371 148 95
glViewport 14.6 6 5 [i)
adev_open_output_stream 390.1 612 264 0
adev_open_input_stream 170.1 566 234 0
adev_open 2.2 12 0 0
adev_set_parameters 107.7 237 122 0
AP adev_set_mode 2.8 3 0 0
adev_set_voice_volume 2.7 1 0 0
adev_set_mic_mute 3.4 1 0 0
out_write 89.6 50 24 10
out_set_parameters 259 136 34 0
out_drain 5.8 2 0 0
getNumberOfCameras 47.6 46 28 3
connectDevice 29.0 19 2 5
getCameraCharacteristics | 289 45 18 0
supportsCameraApi 4.1 2 0 0
CS submitRequestList 20.7 18 2 7
cancelRequest 4.1 1 0 0
endConfigure 4.2 1 0 0
createStream 93.6 87 33 7
createDefaul tRequest 4.9 1 0 0

Table 1. Single-API testing of OS services with Mousse. Abbre-
viations used in the table: GS = GPU Stack, AP = AudioProvider,
CS = CameraServer, Res. = Resource constraint, Env. = Envi-
ronment consistency.

Execution time of more APIs

50

Summary

We introduced Mousse, a system for analyzing programs with untamed

environments using SSE.

Mousse outperforms alternative solutions in terms of performance and code

coverage.

Mousse opens the opportunity to perform various analyses on programs with

untamed environments.

Mousse is open sourced: https://trusslab.github.io/mousse/

51

Back up slides

Example to show blind concurrency does not work

/* Audio service out_write APl */

1 static ssize t out_write(struct audio _stream_out *stream, const void *buffer, size_t bytes) {

2 struct stream_out *out = (struct stream_out *)stream;

3 Iock_o&z;put_stream(out);

4 long ns= (frames * (int64_t) NANOS_PER_SECOND) / out->config.rate;
5 request_out_focus(out, ns);

6 ret = pgﬁv_write(out->pcm, (void *)buffer, bytes to write);

7 pthreaa;mutex_unlock(&out->lock);

8}

Example to show blind concurrency does not work

/* Code in the audio driver where the error happens */

1 void *q6asm_is_cpu_buf _avail(int dir, struct audio_client *ac, uint32_t *size, uint32_t *index)
2{

3 void *data;

4 unsigned char idx;
5 struct audio_port _data *port;

8 if (port->buffidx].used == dir) {

11 pr_err("%s: Next buf idx[0x%Xx] not available, dir[%d]\n", __func__, idx, dir);
12 mutex_unlock(&port->lock);

13 return NULL;

14)}

156}

54

