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What are programs with untamed
environments?
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Example programs with untamed environments
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Programs with untamed environments are growing

Copyright: https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08 frag mentation_report.pgf



Selective Symbolic Execution (SSE)

“‘Selective symbolic execution is a way to specify which parts of this big “program” should run
concretely and which ones should run symbolically.”

“Selective symbolic execution makes symbolic execution practical for large software that runs
in real environments.”

- Selective symbolic execution [HotDep’09]



Existing approaches for analyzing programs
with untamed environments using SSE
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Existing approach - symbolic environment

/

Program

write read

“drop” Symbolic variable

Symbolic environment

Symbolic execution engine

~

\_

/

Device

RevNIC [EuroSys’10]
DDT [USENIX ATC'10]
SymDrive [OSDI'12]

11



Existing approach - symbolic environment
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Existing approach - decoupled execution
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Existing approach - decoupled execution
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Existing approach - decoupled execution
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Mousse
is tailored for programs with untamed
environments achieving three important goals
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Mousse’s goals
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Mousse’s solutions

Process-level SSE

Environment-aware concurrency

Distributed execution



Mousse’s solutions

Process-level SSE
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VM-level SSE
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VM-level SSE
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Process-level SSE: key idea
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Process-level SSE: key idea
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Process-level SSE: key idea
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Process-level SSE: benefits
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Mousse’s solutions

Environment-aware concurrency



Environment-aware concurrency: key idea
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Environment-aware concurrency: key idea
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Environment-aware concurrency: key idea
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Environment-aware concurrency: key idea
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Environment-aware concurrency: key idea
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Environment-aware concurrency: key idea

Environmentally
consistent paths

Environmentally
inconsistent paths

Execution path 1

Process-level
SSE

Env. aware
Conc.

User space

Execution path 4

Process-level
SSE

Env. aware
Conc.

Untamed environment

35



Environment-aware concurrency: benefits
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Mousse’s solutions

Distributed execution
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Distributed execution: key idea
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Distributed execution: key idea
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Distributed execution: key idea
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Distributed execution: benefits
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Evaluation
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Evaluated Mousse on five Android OS services

% AudioServer and AudioProvider services in Pixel 3
% CameraService and CameraDaemon services in Nexus 5X

% OpenGLES graphics libraries in Nexus 5
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Env. aware conc. improves execution time
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Env. aware conc. improves execution time
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Distributed execution improves execution time
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Distributed execution improves execution time
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Env. aware conc. & distributed execution improve

execution time
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More evaluation results
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Coverage evaluation

e Bugs and vulnerabilities
o  Two null-pointer dereferences
o  Two double-free vulnerabilities
e Taint analysis

e Performance profiling

Analysis results

#of #of
Exe- off- off-
Ser- ¢
e API name clunon #of loads | loads
isne time path | due due
(minutes) to to
Res. Env.
eglCreateWindowSurface 115.9 11 3 9
eglQuerySurface 118.8 88 40 21
Gs eglGetDisplay 8.7 1 0 0
glCreateShader 34.2 5 0 3
glShaderSource 1605.8 371 148 95
glViewport 14.6 6 5 [i)
adev_open_output_stream 390.1 612 264 0
adev_open_input_stream 170.1 566 234 0
adev_open 2.2 12 0 0
adev_set_parameters 107.7 237 122 0
AP adev_set_mode 2.8 3 0 0
adev_set_voice_volume 2.7 1 0 0
adev_set_mic_mute 3.4 1 0 0
out_write 89.6 50 24 10
out_set_parameters 259 136 34 0
out_drain 5.8 2 0 0
getNumberOfCameras 47.6 46 28 3
connectDevice 29.0 19 2 5
getCameraCharacteristics | 289 45 18 0
supportsCameraApi 4.1 2 0 0
CS submitRequestList 20.7 18 2 7
cancelRequest 4.1 1 0 0
endConfigure 4.2 1 0 0
createStream 93.6 87 33 7
createDefaul tRequest 4.9 1 0 0

Table 1. Single-API testing of OS services with Mousse. Abbre-
viations used in the table: GS = GPU Stack, AP = AudioProvider,
CS = CameraServer, Res. = Resource constraint, Env. = Envi-
ronment consistency.

Execution time of more APIs
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Summary

We introduced Mousse, a system for analyzing programs with untamed

environments using SSE.

Mousse outperforms alternative solutions in terms of performance and code

coverage.

Mousse opens the opportunity to perform various analyses on programs with

untamed environments.

Mousse is open sourced: https://trusslab.github.io/mousse/
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Back up slides



Example to show blind concurrency does not work

/* Audio service out_write APl */

1 static ssize t out_write(struct audio _stream_out *stream, const void *buffer, size_t bytes) {

2 struct stream_out *out = (struct stream_out *)stream;

3 Iock_o&z;put_stream(out);

4 long ns= (frames * (int64_t) NANOS_PER_SECOND) / out->config.rate;
5 request_out_focus(out, ns);

6 ret = pgﬁv_write(out->pcm, (void *)buffer, bytes to write);

7 pthreaa;mutex_unlock(&out->lock);

8}



Example to show blind concurrency does not work

/* Code in the audio driver where the error happens */

1 void *q6asm_is_cpu_buf _avail(int dir, struct audio_client *ac, uint32_t *size, uint32_t *index)
2{

3 void *data;

4 unsigned char idx;
5 struct audio_port _data *port;

8 if (port->buffidx].used == dir) {

11 pr_err("%s: Next buf idx[0x%Xx] not available, dir[%d]\n", __func__, idx, dir);
12 mutex_unlock(&port->lock);

13 return NULL;

14 )}

156}
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