Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam

| |!
| ,.um; mﬁ‘z‘:‘ul“'"lulh 'llllﬂmll!’“"“!
« i i m|||||ln||||||||||||||||||| Il"‘""""'“'“l"'"l

Accessible Near-Storage Computing with FPGAs !

L

Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, Andreas Polze
Professorship for Operating Systems and Middleware, Hasso-Plattner-Institute

Fifteenth European Conference on Computer Systems (EuroSys ‘20), April 27-30, 2020

Near-Data Computing for Data-Intensive Applications

'%xo d

=

=
-—

o

o

Bandwidth of interconnects and memory buses
limits the scalability of data-intensive applications

Performing computations close to the data source reduces
data movements in the system

Trend towards heterogenous system architectures:
Computing DRAM, Smart SSDs, Smart NICs, ...

AVEIrSys.
G,QW rSIfQ}

Accessible Near-
Storage Computing
with FPGAs

Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 2

Programming Interfaces for Near-Storage Compute “dm

s Near-Storage Computing: SSDs with compute capabilities

= Employing near-storage compute for database acceleration
o Smart SSDs (Do et al., 2013)
o Ibex (Woods et al., 2013)

= What are suitable programming interfaces for near-storage compute? Accessible Near-
:)] _ Storage Computing
o Insider (Ruan et al., 2019): Virtual file abstraction with FPGAs
Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 3

Hardware Testbed

Xilinx Kintex OpenPower
Samsung PM953 XCKU 060 S824L

Nallatech N250S

Accessible Near-
Storage Computing
with FPGAs

€ XILINX -~ o0

ALL PROGRAMMABLE.. OpenPOWER EUFOSYS 20
April 27-30, 2020
Chart 4

o

Scenario

Column
uint64

Near-Storage Compute Graph:

filter

aggregation

aggregation

DETELES
Application

Accessible Near-
Storage Computing
with FPGAs

Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 5

Introducing Metal FS g
m_b filter aggregation
s Metal FS is a framework for orchestrating near-storage compute
s Re-uses Unix Operating System concepts:
o Data items (streams of bytes): Files
o Computation kernels (‘Operators’): Executables
- Composition primitives: Pipe and Redirection Shell-Operators Accessible Near-
Storage Computing
with FPGAs
Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 6

Metal FS: Files and Operators

Filtered
filter Column

) @® %6 Metal FS Demo

/ $ metal-cat —p /mtl/files/column_uint64(:)filter ——lower-bound @ ——upper—boun
d2 | pv > /dev/null

STREAM BYTES TRANSFERRED ACTIVE CYCLES DATA WAIT CONSUMER WAIT MiB/s
output 1073741824 16777216 7% 193520489 78% 37713732 15% 1082.31
512MiB 0:00:01 [495MiB/s] [<=>]
/s 1

Accessible Near-
Storage Computing
with FPGAs

Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 7

Metal FS Core Components

|

|

|

|

|

Highlighted Aspects
Operator definition

Detecting Unix Pipe expressions

More features not covered in this presentation

Manifest-driven FPGA image build process

Hybrid filesystem implementation

Package manger for distributing operator source code
Docker-based hardware and software development environment
Use as a library, C++ API

Accessible Near-
Storage Computing
with FPGAs

Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 8

Operators as FPGA Computation Primitives

s Data Stream Operators encapsulate computations
s Defined in HLS or VHDL/Verilog

s Operate on untyped byte streams

s Parameterizable at runtime

= HLS Example Operator:

void my operator(mtl stream &in, mtl stream &out) {
mtl stream element element;

do { Accessible Near-
element = in.read(); Storage Computing
// TODO: Transform element.data with FPGAs
out.write(element); Robert Schmid

} while (!element.last); EuroSys '20

April 27-30, 2020
} Chart 9

Metal FS: Detecting Unix Pipe Expressions

s Metal FS runs entirely in user-space
s Operators are represented by proxy executables in the file system

s Detect composition of proxy executables by using ‘reflection’
o Scan Linux’ procfs for matching stdin, stdout file descriptors

o /proc/<pid>/fd/0,1 = pipe:[<id>]

m FUSE filesystem process collects information from all running proxy
processes and invokes FPGA processing

Accessible Near-
Storage Computing
with FPGAs

Robert Schmid
EuroSys '20

April 27-30, 2020
Chart 10

\,SQ'QJCI'SIZ:Q
. 3 1!»
Evaluation gy
s CAPI/NVMe Throughput and FPGA Resource Utilization
o FPGA Image with 4 Passthrough-Operators
o Different Stream Word Widths
Data Throughput CLB Utilization

4.0 GiB/s 84%
35GB/fs =, ememeec e e e —-- 82%
3.0 GiB/s 80%
2.5 GiB/s / o,
2.0 GiB/s

. 76%
1.5 GiB/s A% Accessible Near-
1.0GB/fs = = === = = = = = = = = Storage Computing
0.5 GiB/s 72% with FPGAs
0.0 GiB/s 70% Robert Schmid

8 bytes 16 bytes 32bytes 64 bytes 68% EuroSys '20
——CAPI ——NVMe 8 bytes 16 bytes 32 bytes 64 bytes April 27-30, 2020
Chart 11

= = CAPI Limit = = NVMe Limit —Kintex XCKUO60 FPGA

AVEISyr.
\BQW l”SIfQé(

* »0d

Conclusion

s EXisting operating system interfaces are suitable for near-storage
compute

s Metal FS attempts to improve accessibility of near-storage compute on
multiple levels

o Orchestration Interface, Development Environment, Reusable

Operators
= Outlook
Int ti i |- Id licati - Accessible Near-
o Integration in real-world application scenarios Storage Computing
5 Further evaluate the tradeoff for our abstraction: with FPGAs
Exposing only necessary hardware specifics to maximize portability ngoesrt SS,C;g“'d
across different hardware architectures April 2"7_30, 5020

Chart 12

Thank youl!

Metal FS Documentation and Source Code

m https://metalfs.qgithub.io
https://github.com/osmhpi/metalfs

Thanks!

To the IBM Lab Team in Boblingen: Jorg-Stephan Vogt, Frank Haverkamp,
Sven Boekholt, Thomas Fuchs, Sven Peyer and Nicolas Mading as well as
the CAPI SNAP Team: Bruno Mesnet and Alexandre Castellane

Accessible Near-
Storage Computing

with FPGAs
Contact Robert Schmid
Robert Schmid EuroSys '20

April 27-30, 2020

robert.schmid@hpi.uni-potsdam.de Chart 13

