A Multi-variant Execution Environment for In-memory Databases

Shuhei Enomoto (Student)t, and Hiroshi YamadaT
TTUAT

Software vulnerabilities ————————————Problem

- Modern system software is still written by unsafe languages - In-memory databases are difficult to apply MVEE
- A number of security mechanism is supported - Cause quite large memory space overhead

- ASLR and SSP are can be bypassed with Information leaks
- Sanitizers cannot defend different types of attacks - In-memory databases also suffer from memory

vulnerabilities
- CVE-2019-10192, CVE-2019-10193 (Redis)
- CVE-2019-15026, CVE-2019-11596 (Memcached)

- The multi-variant execution environment (MVEE) is
a promising approach

Master Variant Slave Variant
SSP SSP
ASLR ASLR In-memory DB
ASan UBSan

User Space : ;
syscall syscall -~ Master Variant Slave Variant
Kernel

Syscall Monitor

Proposal — Approach
- MVEE runtime for in-memory databases - Shares the memory contents among variants
- Reduces memory consumption - Observation: In-memory DB variants have the similar memory
- Enhances security as same as existing MVEE contents to each other
- No modification of in-memory DBs Existing MVEE Proposal
In-memory DB | other ' Ma§ter Ma§ter) _
W\ Variant Variant ‘ /
¥ W< Sl
, , ‘ Slave Slave '
Master Variant| Slave Variant | other SET item Variant Variant
Design

- Syscall Monitoring

- Synchronizes syscalls
- Each variant is given the same inputs

- Page Scanning

- Selects pages from address space of variants
- Conditions (1): anonymous page

o Master Variant
- Conditions (2): stable content page

Slave Variant

I]
. I
- Page Merging — -
- Merges same pages selected by scanner
Makes PTE pointed G — e
- Makes pointed to merged page —
- Sets write protect flag
Page
- Releases other pages -
Scanner

Experiment: Memory Usage

- Launches Memcached as variant and Tests memtier benchmark

- Measures total PSS of variants
memory usage in memcached N EXt P I dNS

implementation

- Implemented into Linux 4.4.185

- Page scanner and Merger: 411 LoC
- Syscall Monitor: 1018 LoC

4000 - - Makes page-sharing
: : - 19% mechanism more efficient
Conflgu ration 3000 - Scanning with selected range
- CPU: Intel Xeon Processor 4 cores|| _ , S o £ load
= 0 - Supports for more workloads
- Memory: 8GB of RAM = 2000 - 067] PP
_ | " Make low overhead system
- Variants: 2 e even if write-based workloads
- Pattern(1): ASLR, SSP X 1 1000 - I |
ASLR. SSP X 1 - sanitizer-variant + page-share - Tests for more In-memory DBs
_Pattern(2): ASLR, SSP, ASan X 1 0- —— vanilla-variant + page-share - Tested: Memcached, Redis

ASLR SSP. UBSan X 1 10 0 10 20 30 40 50 60 - Future: SQLite, VoltDB

seconds

