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Software vulnerabilities ————————————Problem

- Modern system software is still written by unsafe languages - In-memory databases are difficult to apply MVEE
- A number of security mechanism is supported - Cause quite large memory space overhead

- ASLR and SSP are can be bypassed with Information leaks
- Sanitizers cannot defend different types of attacks - In-memory databases also suffer from memory

vulnerabilities
- CVE-2019-10192, CVE-2019-10193 (Redis)
- CVE-2019-15026, CVE-2019-11596 (Memcached)

- The multi-variant execution environment (MVEE) is
a promising approach
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Proposal — Approach
- MVEE runtime for in-memory databases - Shares the memory contents among variants
- Reduces memory consumption - Observation: In-memory DB variants have the similar memory
- Enhances security as same as existing MVEE contents to each other
- No modification of in-memory DBs Existing MVEE Proposal
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- Syscall Monitoring

- Synchronizes syscalls
- Each variant is given the same inputs

- Page Scanning

- Selects pages from address space of variants
- Conditions (1): anonymous page
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- Conditions (2): stable content page
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Experiment: Memory Usage

- Launches Memcached as variant and Tests memtier benchmark

- Measures total PSS of variants
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implementation

- Implemented into Linux 4.4.185

- Page scanner and Merger: 411 LoC
- Syscall Monitor: 1018 LoC
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