StRoM: Smart Remote Memory

David Sidler**, Zeke Wang', Monica Chiosa*, Amit Kulkarni*, Gustavo Alonso*

* Microsoft Corporation
T Collaborative Innovation Center of Artificial Intelligence, Zhejiang University
T Systems Group, Department of Computer Science, ETH ZUrich

Increasing Compute-Bandwidth Gap

100000

10000

Compute-
Bandwidth
Gap

1000

100

Relative Speedup

10
1

0.1
1980 1990 2000 2010 2020

—e—CPU frequency —e=Network bandwidth

Increase in CPU cycles allocated
towards network processing

Context switches between OS network
stack and application amplify the issue

RDMA (Remote Direct Memory Access)

RDMA (Remote Direct Memory Access)

= el

e - ©
% e e Hoae,
. ‘o - ®
Te-e
o i
o -
e o
Distributed key-value stores[1,2] Parallel database systems Distributed graph

computation[3]

[1] C. Mitchell, et al., Using One-sided RDMA Reads to build a fast, CPU-efficient key-value store, ATC’13
[2] A. Dragojevic, et al., FaRM: Fast Remote Memory, NSDI’14
[3] M. Wu, et al., GRAM: Scaling graph computation to the trillions, SoCC’15

Get over RDMA: Two-sided vs One-sided

Two-sided (Send/Receive)

@ sendGET

Remote Memory

Hash Table Value Store

. Send Value

One-sided (Direct Access)

. Read Hash Ta

Remote Memory

= Read hash entry
= Compare keys
= Read value

Hash Table Value Store

|

Compare . Read Value

keys

CPU

= Single round trip

= Simple client-server
model

= Remote CPU involved

= Remote CPU not involved
= At least 2 RTs necessary
= Handling of misses costly

StRoM: Smart Remote Memory

StRoM: Deployment of Acceleration kernels on the NIC

m StRoM kernel
I = Direct access to host memory
‘ > = Able to receive/transmit data
over RDMA
< kernel

GET as StRoM Kernel

= Read hash entry Remote Memory

= Compare keys
= Read value > Hash Table

GET
kernel

= Single round trip

Value Store
= Remote CPU not involved

(@ RDMA RPC

CPU

Acceleration Capabilities

Accelerating Data Access

Traversal of remote data structures
Verification of data objects
Manipulation of simple data structures

S/

StRoM
kernel

v

A

Accelerating Data Processing

Data shuffling

Filtering

Pattern/event detection
Aggregation
Compression

Statistics gathering

Use Case: Gathering Statistics

HyperLoglLog (HLL) kernel to estimate cardinality of a data set
* Bump-in-the-wire kernel

* Cardinality estimation can augment the optimizer in data processing systems

Remote Memory

data

statistics

Leading

EBucketsg
Zeros - |

Harmonic
mean

Evaluation — StRoM NIC

* FPGA-based prototype RDMA NIC
* Extended RoCEv2 implementation with support for StRoM

StRoM at 10G StRoM at 100G

(I

45
it

Ly
=_ ;
&

Alpha Data ADM-PCIE-7V3

Xilinx VCU118

Evaluation — GET kernel

20
B RDMA READ
15 | | GET kernel - T T |
* Read hash entry Remote Memory Uf:_
: ;Dn;parf keys Hash Table :
® O 10 |- Sus -
Value Store Q
—
@ write CPU 5 n
0
64B 128B 256B 512B 1KB 2KB 4KB
Value size

Evaluation — HLL kernel

100

RDMA WRITE + HLL kernel

@ 80 |-{mmmRDMA WRITE N |

1. = | N \ \ |
5 40 NG NE N\

= N BN
oLssmEm N\ \ \ \

| | \
64B 128B 512B 1KB 4KB
Payload size

Conclusion

* Deployment of acceleration kernels on the NIC

* Acceleration of data access and data processing at up to 100G
e Research platform

)

Open source at github.com/fpgasystems/fpga-network-stack

