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Increasing Compute-Bandwidth Gap
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Increase in CPU cycles allocated
towards network processing

Context switches between OS network
stack and application amplify the issue



RDMA (Remote Direct Memory Access)

RDMA (Remote Direct Memory Access)
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Get over RDMA: Two-sided vs One-sided

Two-sided (Send/Receive)
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= Read hash entry
= Compare keys
= Read value

Hash Table Value Store
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= Single round trip

= Simple client-server
model

= Remote CPU involved

= Remote CPU not involved
= At least 2 RTs necessary
= Handling of misses costly



StRoM: Smart Remote Memory

StRoM: Deployment of Acceleration kernels on the NIC

m StRoM kernel
I = Direct access to host memory
‘ > = Able to receive/transmit data
over RDMA
< kernel




GET as StRoM Kernel

= Read hash entry Remote Memory

= Compare keys
= Read value > Hash Table
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= Single round trip

Value Store
= Remote CPU not involved
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Acceleration Capabilities

Accelerating Data Access

Traversal of remote data structures
Verification of data objects
Manipulation of simple data structures
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Accelerating Data Processing

Data shuffling

Filtering

Pattern/event detection
Aggregation
Compression

Statistics gathering




Use Case: Gathering Statistics

HyperLoglLog (HLL) kernel to estimate cardinality of a data set
* Bump-in-the-wire kernel

* Cardinality estimation can augment the optimizer in data processing systems
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Evaluation — StRoM NIC

* FPGA-based prototype RDMA NIC
* Extended RoCEv2 implementation with support for StRoM

StRoM at 10G StRoM at 100G

(I

45
it

Ly
=_ ;
&

Alpha Data ADM-PCIE-7V3

Xilinx VCU118



Evaluation — GET kernel
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Evaluation — HLL kernel
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Conclusion

* Deployment of acceleration kernels on the NIC

* Acceleration of data access and data processing at up to 100G
e Research platform

)

Open source at github.com/fpgasystems/fpga-network-stack



