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Google runs in 
containers

In any given week, we 

launch over two billion 

containers across 

Google.
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Resource limits are crucial to isolate workloads

container limit:
max amount of CPU/mem
a container can use

container usage:
CPU/mem used

container slack:
CPU/mem wasted
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Borg, our scheduler, 
packs containers to 
machines by resource 
limits.

image source: http://dx.doi.org/10.1145/2741948.2741964 [Verma et al., EuroSys’15]

machines

http://dx.doi.org/10.1145/2741948.2741964
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Limits are fine-grained: 
CPU in milli-cores
memory in bytes

Source: http://dx.doi.org/10.1145/2741948.2741964 [Verma et al., EuroSys’15]

http://dx.doi.org/10.1145/2741948.2741964
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We pack containers to machines by limits.

So, precise limits are crucial for efficiency and reliability.
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We pack containers to machines by limits.

So, precise limits are crucial for efficiency and reliability.
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We pack containers to machines by limits.

So, precise limits are crucial for efficiency and reliability.
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Autopilot acts as a controller for Borg limits.

Autopilot continuously  adjusts resource limits: 

CPU/Mem limits for containers (vertical scaling),

number of replicas (horizontal scaling).

container 
limits
container 
counts container 

limits
start/stop

containers
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Autopilot Recommenders
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Moving window recommenders

● Exponentially-decaying samples 

(half-life of 48 hours)

● Compute statistics over the 

samples, e.g. 95%ile

● add a safety margin
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Moving window recommenders

● Exponentially-decaying samples 

(half-life of 48 hours)

● Compute statistics over the 

samples, e.g. 95%ile

● add a safety margin

time

resources

usage

exponential decay

safety margin

limit
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● Each model is an arg-max 

algorithm picking a limit value

● Each model is parametrized by 

the decay rate and the safety 

margin.

● The recommender picks the 

model performing the best over a 

longer time period.

Machine learning recommenders

decay rate

limit
model nmodel 1 model 2 …….
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Evaluation: 
Observational study of production jobs
Focus on memory
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Autopilot efficiency - reduction of slack

relative slack: 
(av_limit - 95%ile usage) / (av_limit)

16

limit(t)

usage(t)

slack(t)

absolute slack:
∫ slack(t) dt = ∫ limit(t) dt  - ∫ usage(t) dt

unit: capacity of a single (largish) 
machine

av_limit
average 

limit during 
the day

95%ile 
usage 
during 
the day

(av_limit - 95%ile usage)
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A random sample of 5000 jobs in each 

category.
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Autopiloted jobs have 
significantly smaller 
relative slack.

Relative slack: (av_limit - 95%ile usage) / av_limit
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Autopiloted jobs save 
significant capacity.
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When jobs migrate to 
Autopilot, their slack is 
significantly reduced.

A random sample of 500 

jobs that migrated to 

autopilot in a certain 

month, m0. 

CDFs for slack for 2 months 

before and after migration

reduction of relative slack
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Autopilot Reliability: 
how frequent are 
out-of-memory errors.

We count terminations of 

containers.

We weight the number of 

terminations by the average 

number of containers of a job.

out-of-resources crash

requested 
usage

container 
limit

machine 
capacity
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Autopilot reduces the 
frequency of 
out-of-memory events.

OOMs are rare: 99.5% of 

autopiloted jobs have no 

OOMs.
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DevOps:
Autopiloted jobs account for over 
48% of Google’s fleet-wide resource 
usage.



Proprietary + ConfidentialAutopilot’s dynamic limits could help to 
keep the job running despite bugs.
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1. Efficient scheduling requires fine-grained control of jobs’ limits

2. Humans are bad at setting the limits precisely.

3. Autopilot uses past usage to drive future limits

4. Autopilot reduces relative slack by 2x

...and it reduces the number of jobs severely impacted by OOMs 10x

Autopilot: workload autoscaling at Google


