
A Linux in 
Unikernel Clothing
Hsuan-Chi Kuo+, Dan Williams*, 
Ricardo Koller* and Sibin Mohan+

+University of Illinois at Urbana-Champaign
*IBM Research

Lupine



Unikernels are great

2

BUT: Unikernels lack full Linux Support

● Hermitux: supports only 97 system calls
● OSv: 

○ Fork() , execve() are not supported
○ Special files are not supported such as /proc
○ Signal mechanism is not complete

● Rumprun: only 37 curated applications
● Community is too small to keep it rolling● Heavy 

● Inefficient

● Small kernel size
● Fast boot time
● Improved performance
● Better security

Hypervisor

LibOS + App

Hypervisor

Kernel

App



Can Linux behave like a unikernel?

3



Lupine Linux

4



Lupine Linux

5

● Kernel mode Linux (KML)
○ Enables normal user process to run in kernel mode
○ Processes can still use system services such as paging and scheduling
○ App calls kernel routines directly without privilege transition costs

● Minimal patch to libc
○ Replace syscall instruction to call
○ The address of the called function is exported by the patched KML kernel 

using the vsyscall
○ No application changes/recompilation required



Based on: Unikernel benefits

Evaluation Metrics

6

Boot time

Image size

Syscall overhead

Application performance

Memory footprint



Configuration diversity
● 20 top apps on Docker hub (83% of all 

downloads)
● Only 19 configuration options required to run all 

20 applications: lupine-general

7



Evaluation - Comparison configurations

8

Cloud Operating Systems

OSv

Hermitux

Rumprun

Unikernels

Lupine
[Lupine-base 

+ app-specific options]

general
Kernel for 20 apps

MicroVM

Linux-based



Evaluation - Image size

9

● Configuration is effective
● 4 MB
● 27% of microvm
● Even lupine-general 

produces smaller images 
than Rump, OSv



Evaluation - Boot time

10

● OSv boot heavily depends 
on FS choice

● Lupine boot time without 
KML*

● Even lupine-general boots 
faster than Hermitux, OSv



Evaluation - Memory footprint

11

● Repeatedly tested app with 
decreasing memory allotment

● Choice of apps limited by 
unikernels

● No variation in lupine: lazy 
loading makes binary size 
irrelevant



Evaluation - System call overheads

12

● Lmbench
● 56% improvement over 

microvm from specialization
● Additional 40% from KML
● KML benefit vanishes quickly in 

more realistic workloads



Evaluation - Application performance

13

● Throughput normalized to 
microVM

● Application choice limited by 
unikernels

● Lupine outperforms microVM by 
up to 33%

● Lupine-general does not 
sacrifice performance

● Linux implementation is highly 
optimized



14

Application performance Up to 33% higher throughput

Boot time 23ms boot time

Image size 4MB image size

Best of all, it is still a Linux.

Lupine achieves unikernel benefits



Takeaways
● Specialization is important: 

○ 73% smaller image size, 59% faster boot time, 28% lower memory footprint and 33% higher 
throughput than the state-of-the-art VM

● Specialization per application may not be: 
○ 19 options (lupine-general) cover at least 83% of downloaded apps with at most 4% reduction 

in performance

● System call overhead elimination may not be: 
○ only 4% improvement for macro-benchmark, unlike 40% for microbenchmarks

● Lupine avoids common pitfalls: has support for unmodified Linux 
applications, optimized implementation

15



Thank you!
Hsuan-Chi Kuo hckuo2@illinois.edu
Dan Williams djwilla@us.ibm.com
Ricardo Koller kollerr@us.ibm.com

Sibin Mohan sibin@illinois.edu

https://synercys.github.io/projects/lupine

Lupine

https://synercys.github.io/projects/lupine

