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Unikernels are great

2

BUT: Unikernels lack full Linux Support

● Hermitux: supports only 97 system calls
● OSv: 

○ Fork() , execve() are not supported
○ Special files are not supported such as /proc
○ Signal mechanism is not complete

● Rumprun: only 37 curated applications
● Community is too small to keep it rolling● Heavy 

● Inefficient

● Small kernel size
● Fast boot time
● Improved performance
● Better security
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Can Linux behave like a unikernel?
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Lupine Linux
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Lupine Linux
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● Kernel mode Linux (KML)
○ Enables normal user process to run in kernel mode
○ Processes can still use system services such as paging and scheduling
○ App calls kernel routines directly without privilege transition costs

● Minimal patch to libc
○ Replace syscall instruction to call
○ The address of the called function is exported by the patched KML kernel 

using the vsyscall
○ No application changes/recompilation required



Based on: Unikernel benefits

Evaluation Metrics
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Boot time

Image size

Syscall overhead

Application performance

Memory footprint



Configuration diversity
● 20 top apps on Docker hub (83% of all 

downloads)
● Only 19 configuration options required to run all 

20 applications: lupine-general
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Evaluation - Comparison configurations
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Evaluation - Image size
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● Configuration is effective
● 4 MB
● 27% of microvm
● Even lupine-general 

produces smaller images 
than Rump, OSv



Evaluation - Boot time
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● OSv boot heavily depends 
on FS choice

● Lupine boot time without 
KML*

● Even lupine-general boots 
faster than Hermitux, OSv



Evaluation - Memory footprint
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● Repeatedly tested app with 
decreasing memory allotment

● Choice of apps limited by 
unikernels

● No variation in lupine: lazy 
loading makes binary size 
irrelevant



Evaluation - System call overheads
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● Lmbench
● 56% improvement over 

microvm from specialization
● Additional 40% from KML
● KML benefit vanishes quickly in 

more realistic workloads



Evaluation - Application performance
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● Throughput normalized to 
microVM

● Application choice limited by 
unikernels

● Lupine outperforms microVM by 
up to 33%

● Lupine-general does not 
sacrifice performance

● Linux implementation is highly 
optimized
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Application performance Up to 33% higher throughput

Boot time 23ms boot time

Image size 4MB image size

Best of all, it is still a Linux.

Lupine achieves unikernel benefits



Takeaways
● Specialization is important: 

○ 73% smaller image size, 59% faster boot time, 28% lower memory footprint and 33% higher 
throughput than the state-of-the-art VM

● Specialization per application may not be: 
○ 19 options (lupine-general) cover at least 83% of downloaded apps with at most 4% reduction 

in performance

● System call overhead elimination may not be: 
○ only 4% improvement for macro-benchmark, unlike 40% for microbenchmarks

● Lupine avoids common pitfalls: has support for unmodified Linux 
applications, optimized implementation
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