A Linux in
Unikernel Clothing

Hsuan-Chi Kuo®*, Dan Williams*,
Ricardo Koller* and Sibin Mohan™

*University of lllinois at Urbana-Champaign
*IBM Research

I IBM Research

Unikernels are great

App

Kernel

Heavy
Inefficient

LibOS + App

Small kernel size
Fast boot time

BUT: Unikernels lack full Linux Support

e Hermitux: supports only 97 system calls

e OSv:
o Fork(), execve() are not supported
o Special files are not supported such as /proc
o Signal mechanism is not complete

e Rumprun: only 37 curated applications

e Community is too small to keep it rolling

Improved performance

Better security

Can Linux behave like a unikernel?

Application (container) Unikernel-like techniques App rootfs

Specialization
via Kconfig

Application manifest

A

Linux source

System Call
Overhead
Elimination
via KML

' Lupine Linux

“Unikernel”

AUllERBNESIENEIN Unikernel-like techniques App rootfs

Application manifest

Specialization
Lupine Linux .
»

System Call
Overhead :
Elimination - o
: : : Lupine Linux
All 16000 Linux microvm 833 ; via KML “Unikernel”
. : Linux source
configurations (5%)

lupine-base 283 Application nd 550
(34%) cessary options (66%)
J
11 89 150
(56%) (16%) (28%)

W Application specific ™ Multiprocessing =~ HW management

AN ENEEEEN Unikernel-like techniques App rootfs

Application manifest

Lupine Linux —
=

e Kernel mode Linux (KML)
o Enables normal user process to run in kernel mode

Linux source

Specialization
via Kconfig

System Call

Overhead
Elimination
via KML

I Lupine Linux

“Unikernel”

o Processes can still use system services such as paging and scheduling

o App calls kernel routines directly without privilege transition costs

e Minimal patch to libc
o Replace syscall instruction to call

o The address of the called function is exported by the patched KML kernel

using the vsyscall
o No application changes/recompilation required

— Boot time

Evaluation Metrics

- Image size

!

Based on: Unikernel benefits - Memory footprint

- Application performance

- Syscall overhead

Configuration diversity

20
18
16
14
12
10

Number config options

20 top apps on Docker hub (83% of all
downloads)

Only 19 configuration options required to run all
20 applications: lupine-general

2 4 6 8 10 12 14
Support for top x apps

20

Options atop

Name Downloads | Description)
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
traefik 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
influxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Evaluation - Comparison configurations

Lupine
[Lupine-base
+ app-specific options]

general
Kernel for 20 apps

MicroVM

Cloud Operating Systems]

|
|
‘{Linux-basedJ [Unikernels }_

OSv

Hermitux

Rumprun

Evaluation - Image size

Configuration is effective

4 MB 6
27% of microvm 313
Even lupine-general @: 1%
produces smaller images g g
than Rump, OSv 2

/77/'(_70 Wy

Wpipg

liinss
Up/ne\gen herp, - Osy,
Cray

Evaluation - Boot time

e OSv boot heavily depends
on FS choice

e Lupine boot time without w 60 == : . l . ; :
KML* g aof . i
e Even lupine-general boots 2 Bl = g s 53 i
faster than Hermitux, OSv = Lk 5 B o B BT
ero Vi /Uplhe‘nol/fup/he‘ﬁo: Mty WVerogy Pz mp
o

*KML incompatibility with CONFIG_PARAVIRT

10

Evaluation - Memory footprint

e Repeatedly tested app with
decreasing memory allotment

e Choice of apps limited by
unikernels 50

e No variation in lupine: lazy o
loading makes binary size 20
irrelevant

Megabytes

10

11

Evaluation - System call overheads

o ‘\0.5‘\’\
e Lmbench | e = I\
. 0.08 - read E= h
e 56% improvement over B . write £
. 'SNT . — 0.06 i
microvm from specialization 5 %
e Additional 40% from KML s RN Al Bk Bk om0 N el
e KML benefit vanishes quickly in 2l KN BN BN K N
more realistic workloads Moy, Mopg Mong Mong Yo, O iy,
n o S U
K Sy
"E 0.4 1 1 1 1 1 1 1
g Yool]
2 025} -
a 02F 4
£ 015} .
1 01 F -]
E 0.08- 1 1 1 1 1 1 1 5
0 20 40 60 80 100 120 140 160

Iterations between system calls
12

Evaluation - Application performance

e Throughput normalized to

microVM <
) i) o ame redis-get | redis-set | nginx-conn | nginx-sess
e Application choice limited by micoVM 1,00 1,00 1.00 1.00
. lupine-general 1.19 1.20 1.29 1.15
unlkernels [lupine 1.21 1.22 1.33 1.14
P Lup|ne Outperforms microVM by lupine-tiny 1.15 1.16 1.23 1.11
o lupine-nokml 1.20 1.21 1.29 1.16
Up tO 33 A) lupine-nokml-tiny | 1.13 1.13 1.21 1.12
: hermitux .66 .67
° Lupmg-general does not o - -
sacrifice performance rump 99 99 1.25 53
e Linux implementation is hlghly Table 4. Application performance normalized to MicroVM

.. (Note: higher value is better).
optimized &

Lupine achieves unikernel benefits

Image size 4MB image size

Boot time 23ms boot time

Application performance Up to 33% higher throughput

KK

Best of all, it is still a Linux.

14

Takeaways

e Specialization is important:
o 73% smaller image size, 59% faster boot time, 28% lower memory footprint and 33% higher
throughput than the state-of-the-art VM

e Specialization per application may not be:
o 19 options (lupine-general) cover at least 83% of downloaded apps with at most 4% reduction
in performance

e System call overhead elimination may not be:
o only 4% improvement for macro-benchmark, unlike 40% for microbenchmarks

e Lupine avoids common pitfalls: has support for unmodified Linux
applications, optimized implementation

15

Thank you!

Hsuan-Chi Kuo hckuo2@illinois.edu

Dan Williams djwilla@us.ibm.com

Ricardo Koller kollerr@us.ibm.com

Sibin Mohan sibin@illinois.edu

https://synercys.qgithub.io/projects/lupine

I IBM Research

Soie" (¢ Techt\"\o‘éﬁ

C°SR

https://synercys.github.io/projects/lupine

