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Fault-Tolerance in Serverless Computing

• FaaS programs with shared state raise concerns about faults

What happens when 
functions fail mid-flight?

What happens when 
infrastructure fails 

between functions?

What is the contract with 
the user?



Semantic Goals for Stateful FaaS

• Understandable: exactly-once executions
• State of play for commercial FaaS: at-least once execution
• Advice: Roll your own idempotence – difficult to reason about!

• But idempotence is not enough!
• Fractional executions can leak partial side effects

• What else do we need? Atomicity!
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Partial Executions: 0.5?

• Retries – even if idempotent – can expose partial executions
• Make some results of a function visible but not all
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AFT: A Serverless Fault-Tolerance Shim

• Goal: Exactly-once transactions for FaaS with minimal code 
changes

• Design
• Transparent fault-tolerance for FaaS runtimes
• Implements new protocols for read atomic isolation

• Results
• Low overheads compared to standard cloud deployments
• Highly scalable



The Bigger Picture

• Part of a broader stack in the RISE Lab: the Hydro Project
• Check out our long talk for more details! 

hydro-project.github.io

http://hydro-project.github.io

