
AFT: A Serverless Fault-
Tolerance Shim
Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, 
Joseph E. Gonzalez, Joseph M. Hellerstein, Jose M. Faleiro
RISE Lab, UC Berkeley
04/29/2020



Fault-Tolerance in Serverless Computing

• FaaS programs with shared state raise concerns about faults

What happens when 
functions fail mid-flight?

What happens when 
infrastructure fails 

between functions?

What is the contract with 
the user?



Semantic Goals for Stateful FaaS

• Understandable: exactly-once executions
• State of play for commercial FaaS: at-least once execution
• Advice: Roll your own idempotence – difficult to reason about!

• But idempotence is not enough!
• Fractional executions can leak partial side effects

• What else do we need? Atomicity!



A0

Partial Executions: 0.5?

• Retries – even if idempotent – can expose partial executions
• Make some results of a function visible but not all

B0

Request 1 Request 2
W(A1)

R(A)
R(B)

W(A1)
W(B1)



A1

Partial Executions: 0.5?

• Retries – even if idempotent – can expose partial executions
• Make some results of a function visible but not all

B0

Request 1 Request 2
W(A1)

R(A)
R(B)

W(A1)

ERROR



A1

Partial Executions: 0.5?

• Retries – even if idempotent – can expose partial executions
• Make some results of a function visible but not all

A1

B0

B0

Request 1 Request 2
W(A1)

R(A)
R(B)

W(A1)

ERROR



AFT: A Serverless Fault-Tolerance Shim

• Goal: Exactly-once transactions for FaaS with minimal code 
changes

• Design
• Transparent fault-tolerance for FaaS runtimes
• Implements new protocols for read atomic isolation

• Results
• Low overheads compared to standard cloud deployments
• Highly scalable



The Bigger Picture

• Part of a broader stack in the RISE Lab: the Hydro Project
• Check out our long talk for more details! 

hydro-project.github.io

http://hydro-project.github.io

