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Background and Motivation

• GPUs enable massive parallelism for graph processing
- CuSha [1]

- Gunrock [2]

- Tigr [3]

- … 

• Graphs can be large and tend to grow over time
- Web graphs

- Social networks

• But GPU memory is limited!!
- Out-of-GPU-Memory Graph Processing

[1] Khorasani, Farzad, et al. "CuSha: vertex-centric graph processing on GPUs.” HPDC’14
[2] Wang, Yangzihao, et al. "Gunrock: A high-performance graph processing library on the GPU.” PPoPP’16
[3] Nodehi Sabet, Amir Hossein, Junqiao Qiu, and Zhijia Zhao. "Tigr: Transforming irregular graphs for gpu-friendly graph processing.” ASPLOS’18
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Partition-based Graph Processing

ComputationTransferring

Main Memory GPU Memory
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A Key Observation

Ratio of active vertices (edges) is often low in most iterations

Algo. friendster Uk-2007

SSSP 9.1% 5.1%

BFS 4.1% 0.6%

CC 9.8% 3.2%

Average Ratio of Active Edges across Iterations
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Only Load Active Edges to GPU?

Main Memory GPU Memory

5Too expensive to generate ?! 



Efficient Subgraph Generation

Subway:

• a concise subgraph representation, called SubCSR

• a highly parallel algorithm for subgraph generation

• an efficient GPU-accelerated implementation
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SubCSR Generation Cost
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Costs: Partitioning-based  vs. Subway (subgraph generation)
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Takeaway

Too expensive to dynamically generate subgraphs! 

Improve performance up to 28X !

Subway
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Thank you

Amir Nodehi: anode001@ucr.edu or on Slack

The source code (to be posted soon): https://github.com/AutomataLab/Subway
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