
Subway: Minimizing Data Transfer during
Out-of-GPU-Memory Graph Processing

Amir Hossein Nodehi Sabet, Zhijia Zhao, Rajiv Gupta

Computer Science and Engineering

UC Riverside

1

Background and Motivation

• GPUs enable massive parallelism for graph processing
- CuSha [1]

- Gunrock [2]

- Tigr [3]

- …

• Graphs can be large and tend to grow over time
- Web graphs

- Social networks

• But GPU memory is limited!!
- Out-of-GPU-Memory Graph Processing

[1] Khorasani, Farzad, et al. "CuSha: vertex-centric graph processing on GPUs.” HPDC’14
[2] Wang, Yangzihao, et al. "Gunrock: A high-performance graph processing library on the GPU.” PPoPP’16
[3] Nodehi Sabet, Amir Hossein, Junqiao Qiu, and Zhijia Zhao. "Tigr: Transforming irregular graphs for gpu-friendly graph processing.” ASPLOS’18

2

Partition-based Graph Processing

ComputationTransferring

Main Memory GPU Memory

3

A Key Observation

Ratio of active vertices (edges) is often low in most iterations

Algo. friendster Uk-2007

SSSP 9.1% 5.1%

BFS 4.1% 0.6%

CC 9.8% 3.2%

Average Ratio of Active Edges across Iterations

4

Only Load Active Edges to GPU?

Main Memory GPU Memory

5Too expensive to generate ?!

Efficient Subgraph Generation

Subway:

• a concise subgraph representation, called SubCSR

• a highly parallel algorithm for subgraph generation

• an efficient GPU-accelerated implementation

6

SubCSR Generation Cost

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

FS UK FS UK FS UK

SSSP BFS CC

R
el

at
iv

e
C

o
st

PT (Transfer) Subway-sync (SubCSR + Transfer)

3%
17%

Costs: Partitioning-based vs. Subway (subgraph generation)

7

Takeaway

Too expensive to dynamically generate subgraphs!

Improve performance up to 28X !

Subway

8

Thank you

Amir Nodehi: anode001@ucr.edu or on Slack

The source code (to be posted soon): https://github.com/AutomataLab/Subway

9

mailto:anode001@ucr.edu
https://github.com/AutomataLab/Subway

