

Subway: Minimizing Data Transfer during Out-of-GPU-Memory Graph Processing

Amir Hossein Nodehi Sabet, Zhijia Zhao, Rajiv Gupta

Computer Science and Engineering
UC Riverside

Background and Motivation

- GPUs enable massive parallelism for graph processing
 - CuSha [1]
 - Gunrock [2]
 - Tigr [3]
 - ...
- Graphs can be large and tend to grow over time
 - Web graphs
 - Social networks
- But GPU memory is limited!!
 - Out-of-GPU-Memory Graph Processing

^[1] Khorasani, Farzad, et al. "CuSha: vertex-centric graph processing on GPUs." HPDC'14

^[2] Wang, Yangzihao, et al. "Gunrock: A high-performance graph processing library on the GPU." PPoPP'16

Partition-based Graph Processing

Main Memory

GPU Memory

Computation

A Key Observation

Ratio of active vertices (edges) is often low in most iterations

Average Ratio of Active Edges across Iterations

Algo.	friendster	Uk-2007
SSSP	9.1%	5.1%
BFS	4.1%	0.6%
CC	9.8%	3.2%

Only Load Active Edges to GPU?

Main Memory

GPU Memory

Efficient Subgraph Generation

Subway:

- a concise subgraph representation, called SubCSR
- a highly parallel algorithm for subgraph generation
- an efficient GPU-accelerated implementation

SubCSR Generation Cost

Costs: Partitioning-based vs. Subway (subgraph generation)

Takeaway

Too expensive to dynamically generate subgraphs!

Improve performance up to 28X!

Thank you

Amir Nodehi: anode001@ucr.edu or on Slack

The source code (to be posted soon): https://github.com/AutomataLab/Subway