Provable Multicore Schedulers
with Application to
Work-Conservation
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Work conservation

““No core should be left idle when a core is overloaded”
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@ Non work-conserving situation: core O is overloaded, other cores are idle
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Core

Problem

Linux (CFS) suffers from work conservation issues

Number of threads in run queue:
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Core

FreeBSD (ULE) suffers from work conservation issues
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[Bouron et al. 2018]
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Problem

Work conservation bugs are hard to detect
No crash, no deadlock. No obvious symptom.

137 x slowdown on HPC applications

23% slowdown on a database.
[Lozi et al. 2016]
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)
Formally prove work-conservation




Work Conservation Formally

(3c . O(c)) = (Vc' . Tl(c"))
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Work Conservation Formally

(3c . O(c)) = (Vc'. Tl(c"))

Does not work for realistic schedulers!
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Challenge #1

Concurrent events & optimistic concurrency
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Challenge #1

Concurrent events & optimistic concurrency

Q Obse FVE (state of every core)
6 Lock (one core — less overhead)

time

é;'} AC f (e.g., steal threads from locked core)

Based on possibly outdated observations!
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Challenge #1

Concurrent events & optimistic concurrency
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Challenge #1

Concurrent events & optimistic concurrency
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(no lock)

12/32



Ideal

scendario

Challenge #1

Concurrent events & optimistic concurrency
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Challenge #1

Concurrent events & optimistic concurrency

S S Y
Possible scenario:
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Locks “busiest™
Busiest might have no thread left! (Concurrent blocks/terminations.)

14/32



Challenge #1

Concurrent events & optimistic concurrency
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Steal from busiest
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Challenge #1

Concurrent events & optimistic concurrency

Q Observe

Based on possibly outdated observations!
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Concurrent Work Conservation Formally

Definition of overloaded with « failure cases »:

dc . (O(c) A fork(c) A T'unblock(c) ...)

N
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Concurrent Work Conservation Formally

dc . (O(c) A Tfork(c) A 'unblock(c) ...)
=
Ve'.(I(c) A ...)
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Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.
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Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.
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DSL advantages

Trade expressiveness for expertise/knowledge:
: (static) verification of properties
: explicit shared variables

: efficient compilation
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DSL-based proofs

WhyML code Proof

DSL Policy
m Kernel module
DSL: close to C

Easy learn and to compile to WhyML and C 23/32



DSL-based proofs

Proof on all possible
interleavings
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DSL-based proofs

Core O

Proof on all possible

interleavings

Split code in blocks
(1 block = 1 read or write to a
shared variable)

time
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DSL-based proofs

Core O Core 1 ... Core N

Proof on all possible

interleavings

Split code in blocks
(1 block = 1 read or write to a
shared variable)

time

load balancing
Simulate execution of concurrent
blocs on N cores ek
Concurrent WC must hold at the “

end of the load balancing
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DSL-based proofs

load balancing

DSL = few shared variables = tractable

H load balancing

fork

fork




Evaluation

CFS-CWC (365 LOCQ)
Hierarchical CFS-like scheduler

CFS-CWC-FLAT (222 LOCQC)
Single level CFS-like scheduler

ULE-CWC (244 LOC)
BSD-like scheduler
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Less idle time
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Comparable or better performance

BN CFS [ ULE B CFS-CWC [ CFS-CWC-FLAT I ULE-CWC
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NAS benchmarks (lower is better)
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Comparable or better performance

BN CFS [ ULE B CFS-CWC [ CFS-CWC-FLAT I ULE-CWC
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Conclusion

Work conservation: not straighforward!
... hew formalism: concurrent work conservation!

Complex concurrency scheme
...proofs made tractable using a DSL.

Performance: similar or better than CFS.



