Provable Multicore Schedulers
with Application to
Work-Conservation

]

-,

5
. -
A‘ .
- - e
~ B

THE UNIVERSITY OF QSORBONNE i g
SYDNEY) UNIVERSITE P :

boisi Leee cnam ORACLE

W] Alpes

Work conservation

““No core should be left idle when a core is overloaded”

TR T TR T
]
N
N
- o o o
Core O Core 1 Core 2 Core 3

@ Non work-conserving situation: core O is overloaded, other cores are idle

2/32

Core

Problem

Linux (CFS) suffers from work conservation issues

Number of threads in run queue:

R R e e o

2= «— Core is mostly idle

- = s "k 1 r=ap———rrErEk Ty . L.

ILo oo) <«— Core is mostly overloaded
PIRT s oy .-1-"'-'“"."-._"'

T:IL. e ™ -_|.I-I-—_=.'-_.'|'|_ e o =l

Oms 1758
Time (second)

[Lozi et al. 2016] 3/32

Core

FreeBSD (ULE) suffers from work conservation issues

10 -

20 -

30 A

Problem

Time (second)

[Bouron et al. 2018]

10 ~

<«— Core is overloaded

<«— Core is idle

4/32

Problem

Work conservation bugs are hard to detect
No crash, no deadlock. No obvious symptom.

137 x slowdown on HPC applications

23% slowdown on a database.
[Lozi et al. 2016]

5/32

)
Formally prove work-conservation

Work Conservation Formally

(3c . O(c)) = (Vc' . Tl(c"))

[

|
Core O Core 1l

\ 7/32

Work Conservation Formally

(3c . O(c)) = (Vc'. Tl(c"))

Does not work for realistic schedulers!

[

Core O Core \

\ 8/32

Challenge #1

Concurrent events & optimistic concurrency

9/32

Challenge #1

Concurrent events & optimistic concurrency

Q Obse FVE (state of every core)
6 Lock (one core — less overhead)

time

é;'} AC f (e.g., steal threads from locked core)

Based on possibly outdated observations!

10/32

Challenge #1

Concurrent events & optimistic concurrency

SR SR S SR

I

I

] L1

- o L o

Core O Core 1l Core 2 Core 3
Runs load
balancing

11/32

O)

i

Challenge #1

Concurrent events & optimistic concurrency

O)

e

O

—
—
[1]

O)

Core O

Core 1

Core 2

Core 3

Q

Observes load
(no lock)

12/32

Ideal

scendario

Challenge #1

Concurrent events & optimistic concurrency

A‘iib SR S SR
I
I
- o L o
Core O Core 1l Core 2 Core 3

o

Locks busiest

13/32

o

Challenge #1

Concurrent events & optimistic concurrency

S S Y
Possible scenario:
b -
)) -)
Core O Core 1l Core 2 Core 3

o

Locks “busiest™
Busiest might have no thread left! (Concurrent blocks/terminations.)

14/32

Challenge #1

Concurrent events & optimistic concurrency

o

Y Y

Y

<<§.________]
L1
./ ./ ./ ./
Core O Core 1l Core 2 Core 3
(Fail to)

Steal from busiest

15/32

Challenge #1

Concurrent events & optimistic concurrency

Q Observe

Based on possibly outdated observations!

16/32

Concurrent Work Conservation Formally

Definition of overloaded with « failure cases »:

dc . (O(c) A fork(c) A T'unblock(c) ...)

N

17/32

Concurrent Work Conservation Formally

dc . (O(c) A Tfork(c) A 'unblock(c) ...)
=
Ve'.(I(c) A ...)

18/32

Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.

19/32

Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.

20/32

Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.

=

21/32

DSL advantages

Trade expressiveness for expertise/knowledge:
: (static) verification of properties
: explicit shared variables

: efficient compilation

22/32

DSL-based proofs

WhyML code Proof

DSL Policy
m Kernel module
DSL: close to C

Easy learn and to compile to WhyML and C 23/32

DSL-based proofs

Proof on all possible
interleavings

24/32

DSL-based proofs

Core O

Proof on all possible

interleavings

Split code in blocks
(1 block = 1 read or write to a
shared variable)

time

25/32

DSL-based proofs

Core O Core 1 ... Core N

Proof on all possible

interleavings

Split code in blocks
(1 block = 1 read or write to a
shared variable)

time

load balancing
Simulate execution of concurrent
blocs on N cores ek
Concurrent WC must hold at the “

end of the load balancing

26/32

DSL-based proofs

load balancing

DSL = few shared variables = tractable

H load balancing

fork

fork

Evaluation

CFS-CWC (365 LOCQ)
Hierarchical CFS-like scheduler

CFS-CWC-FLAT (222 LOCQC)
Single level CFS-like scheduler

ULE-CWC (244 LOC)
BSD-like scheduler

28/32

Less idle time

160 =

1401 %

1201 =

100
801
60
401
201

Core

160

1401 -

120

1001

801
60
401

Core

201z

)

0 01 0.2 0.3 0.4 | 0.5 0.6

0.

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8
Time in seconds

Execution with vanilla CFS.

O R o] 7 1|

Time in seconds
Execution with CFS-CWC. 29/32

Comparable or better performance

BN CFS [ULE B CFS-CWC [CFS-CWC-FLAT I ULE-CWC

MG.D

NAS benchmarks (lower is better)

30/32

Comparable or better performance

BN CFS [ULE B CFS-CWC [CFS-CWC-FLAT I ULE-CWC

12k
10k

8k

Requests in k/s
(8)]
~

4k
2k
0
32 64 128 256 512
of clients

Sysbench on MySQL (higher is better)
31/32

Conclusion

Work conservation: not straighforward!
... hew formalism: concurrent work conservation!

Complex concurrency scheme
...proofs made tractable using a DSL.

Performance: similar or better than CFS.

