
HovercRaft: Achieving Scalability and Fault-tolerance for
microsecond-scale Datacenter Services

Marios Kogias Edouard Bugnion

Eurosys 2020

§ microsecond-scale computing
§ fast networking

• 10/40/100 Gbps links
• few μs RTTs
• kernel bypass
• in-network programmability

§ in-memory services
§ tight latency SLOs

§ Failures are the common

Datacenter Services
Eu

ro
sy

s
20

20
 /

H
ov

er
cR

af
t

M
ar

io
s

Ko
gi

as

2

Need for microsecond-scale fault-tolerant systems

§ How to implement application-agnostic
fault-tolerance by integrating SMR in the
transport protocol?

§ How to achieve both fault-tolerance
and scalability in SRM?

Contribution
Eu

ro
sy

s
20

20
 /

H
ov

er
cR

af
t

M
ar

io
s

Ko
gi

as

3

Transport

Application
RPC

SMR

Transport

Application
RPC

SMR

Raft HovercRaft

UnRep N=3 N=5 N=7

0 20 40 60 80 100 120 140 160
kRPS

0

200

400

99
-th

 la
te

nc
y

(u
s)

§ SMR in the Transport layer
• Fault-tolerance at the RPC boundaries

§ Forward RPC only when committed

HovercRaft
E

ur
os

ys
 2

02
0

/ H
ov

er
cR

af
t

M
ar

io
s

K
og

ia
s

4

Transport

Application

RPC

SMR

Transport

Application
RPC

SMR

§ HovercRaft on R2P2 (Request-Respose-Pair-Protocol)
• Transport protocol for datacenter RPCs
• Request-Response abstraction at the end-points and the network
• Designed for in-network RPC policy enforcement

§ Fault-tolerance as an RPC policy

§ Allows further optimisations
• e.g IP multicasting, RPC load balancing etc

Raft HovercRaft

§ How to implement application-agnostic
fault-tolerance by integrating SMR in the
transport protocol?

§ How to achieve both fault-tolerance
and scalability in SRM?

Contribution
Eu

ro
sy

s
20

20
 /

H
ov

er
cR

af
t

M
ar

io
s

Ko
gi

as

5

Transport

Application
RPC

SMR

Transport

Application
RPC

SMR

Raft HovercRaft

UnRep N=3 N=5 N=7

0 20 40 60 80 100 120 140 160
kRPS

0

200

400

99
-th

 la
te

nc
y

(u
s)

§ Separate request data and metadata
• IP multicast for request replication

§ Load balance client replies

§ Load balance read-only execution

§ Offload fan-out/fan-in management
to programmable switches

HovercRaft Design Summary
Eu

ro
sy

s
20

20
 /

H
ov

er
cR

af
t

M
ar

io
s

Ko
gi

as

6

☞ Avoid leader IO Tx bottleneck
due to replication

☞ Avoid leader IO Tx bottleneck

☞ Avoid leader CPU bottleneck

☞ Decouple SMR cost from
#followers

Technique Benefit

§ DPDK-based server
§ Microbenchmarks

• Synthetic service time
• Synthetic request-reply size

§ Redis with YCSB-E workload
§ Metrics

• Latency vs throughput
• Max throughput under latency SLO

Evaluation
Eu

ro
sy

s
20

20
 /

H
ov

er
cR

af
t

M
ar

io
s

Ko
gi

as

7

§ TLDR Results
• 1M RPS under 500 μs 99-th Latency
• Fixed SMR cost with different

#followers
• Scalability with #followers for:

§ IO-bottlenecked workloads
(client replies)

§ CPU-bottlenecked read-only
workloads

§ HovercRaft
• Fault-tolerance at the RPC boundaries
• Embed SMR (Raft) in R2P2

§ Use redundancy for fault-tolerance & scalability
• Data and metadata separation and IP multicast
• Careful reply and read-only load balancing
• In-network SRM acceleration with P4 switches

Conclusion
Eu

ro
sy

s
20

20
 /

H
ov

er
cR

af
t

M
ar

io
s

Ko
gi

as

8

https://github.com/epfl-dcsl/hovercraft

Thank you!

https://github.com/epfl-dcsl/hovercraft

